PROSIDING SIMPOSIUM

2nd ISRSC

THE 2ND INDONESIAN SYMPOSIUM ON ROBOT SOCCER COMPETITION

Auditorium UNY, 24 Juni 2014
SUSUNAN PANITIA

"Indonesian Symposium on Robot Soccer Competition 2014".

1. Chairman
 1. Dr. Ir. Endra Pitowarno, M.Eng.
 2. Prof. Dr. Ir. Bambang Riyanto Trilaksono

2. Organizing Committee
 1. Dr. Suwarjo, M.Si.
 2. Moh. Khaireddy, Ph.D.
 3. Imas Marha, M.Pd., M.Kes.
 4. Muhammad Munir, M.Pd.
 5. Ibu Siswanto, M.Pd.
 6. Dr Dian Sawitri

3. Technical Program Committee
 1. Dr. Ir. Wahidin Wahab, M.Sc. (Universitas Indonesia)
 2. Dr. Ir. Endra Pitowarno, M.Eng. (Politeknik Elektronika Negeri Surabaya / PENS)
 3. Ir. Gigi Prabowo, MT (Politeknik Elektronika Negeri Surabaya / PENS)
 4. Ir. Herunanto Sr., M.Eng., Ph.D. (Universitas Gadjah Mada, Yogyakarta)
 5. Prof. Dr. Mauri Ideri Purwomoro (Institut Teknologi Sepuluh Nopember)
 6. Prof. Dr. Ir. Benyamin Kusumaputro (Universitas Indonesia)
 7. Prof. Dr. Ir. Bambang Riyanto Trilaksono (Institut Teknologi Bandung)
 8. Dr. Erla Mozef, MS, DEA (Politeknik Negeri Bandung)
 9. Dr. Ir. Indrawan (Institut Teknologi Bandung)
 10. Dr. Ir. Djoko Purwanto, M.Eng (Institut Teknologi Sepuluh Nopember)
DAFTAR ISI

HALAMAN JUDUL ... i
SUSUNAN PANTITIA ... ii
KATA PENGANTAR ... iii
SAMBUTAN REKTOR UNY ... iv
DAFTAR ISI ... v
SUSUNAN ACARA .. viii

Keynote speech:
RESEARCH TOWARDS ROBOT THAT THINK-RTT
Wahidin Wahab, Msc., Ph.D. (Universitas Indonesia) ... 1

Pemakalah
1. BALL ANTICIPATION METHOD USING LINEAR REGRESSION FOR HUMANCIOID
SOCCER ROBOT GOALIE
Imaduddin A. Majid, Hadha Afrisal, Ridho Nur Rahman, Handika Putra, Bayu Kanugraham
lokanto, Fahmi Akbar Wildana, Ja’far Shodiq, Yusuf Fauzi Nur Iswahyuadi, Aziz Fajar Riyadi,
Ragil Sulistyono, Hafidz Imam P., Dzikri Purnama Sigit, Farahiyah Syarifinah, Bakhtiar Alldino
Idri Sunbodo, Adha Imam Cahyadi .. 6

2. IMPLEMENTASI MICRO SWITCH PADA GERAK JATUH ROBOT BIOLOID TIM
SOCCER UT
Jusman, Muh Surya Akbar, Ayuni ... 12

3. ACCELERATION AND DECELERATION OPTIMIZATION
USING INVERTED PENDULUM MODEL ON HUMANOID ROBOT EROS-2
Azhar Aulia Saputra, Achmad Subhan Khalilullah, Indra Adji Sulistijono 17

4. PENGOLAHAN CITRA DIGITAL PADA ROBOT KRISBI
MENGGUNAKAN MAINCONTROL BERBASIS GUI DENGAN BAHASA C
PADA SISTEM OPERASI WINDOWS
Imam Faisal, M.Nur Fauzi Ibrahim, Hendriana Helda P., Adhy Kurnia T. dan Herlambarg Sigit
Pramono .. 23

5. PENGUNAAN TIMER PADA ROBOT PEMAIN BOLA BLUE HUMAN
Endyki Noviyanto, Hadiriansa ... 29

6. MENENTUKAN POSISI TENDANGAN PADA ROBOT SOCCER MIDUN
MENGGUNAKAN METODE FUZZY
Anton Hidayat, Hendrick, Alex Sandra, Surfa Yondri .. 34

7. IMPLEMENTASI PARTIKEL FILTER DAN MONTE CARLO LOCALIZATION PADA
KRISBI-KRI 2014
Imre Nagi, Maratush Sholihah, Harisah Mahatma P, Muhammad Luqman,
Hanna Prasasta Widyadana, Widyawardana Adiprawita, dan Kusprasapa Mutijarsa 42

8. PERANCANGAN DAN IMPLEMENTASI ALGORITMA SISTEM KOMUNIKASI DAN
ALGORITMA STRATEGI BERMAIN SEPAK BOLA PADA ROBOT HUMANOID EKIDSIZE
Maratush Sholihah, Imre Nagi, Dr. Widyawardana Adiprawita, S.T., M.T., Dr. Kusprasapa
Mutijarsa, S.T., M.T. ... 47

9. SMART PHONE BERBASIS ANDROID SEBAGAI KONTROL UTAMA ROBOT
HUMANOID SOCCER
Aditya Tri Sutrisno N, Yonas Aditya D., Bob William C, Ivan Kurniawan S dan Cholq Budi S... 54

10. APLIKASI DUAL MIKROKONTROLER BIOLOID CM-510 UNTUK MENINGKATKAN
AKSELERASI GERAKAN PADA HUMANOID ROBOT SOCCER
Muhammad Luqman Bukhori dan Wisnu Adi Prasetyanto ST, M.Eng 56

11. PENDETEKSIAN POSISI JATUH PADA ROBOT HUMANOID “OCEANOID”
MENGGUNAKAN SENSOR GYRO GS-12
Achmad Fuad Sulthoni, Hikmatul Izzah, Muhammad Fahreza, Adam Samodra Djatirangga,
Rizky Eko Nugroho .. 62
12. SISTEM KENDALI STEPMOTION ROBOT HUMANOID 20 DERAJAD KEBEBASAN DALAM MENGUKUTI SUAATU Warna
Ridwan Wieaksono S.T., Ir. Priyatmadji, M.T., Ir. Oyas Wahyunggoro, M.T., Ph.D., Immaduddin A.M., Dziki Purnama S. .. 66

13. FAST BALL DETECTION AND TRACKING FOR HUMANOID SOCCER ROBOT USING SIFT KEYPOINT DETECTOR
Bayu Kanigoro, Widodo Budiharto .. 74

14. MENDETEKSI BENTUK DAN WARNA BOLA PADA ROBOT HUMANOID SOCCER DENGAN MENGGUNAKAN RASPBERRY PI
M. Irwan Bustami, Agus Siswanto, Irawan, Afrizal Nenemia Toscani, M. Fajri Ramdhan, Chandra Saputra .. 79

15. ANALISIS STABLE WALKING HUMANOID ROBOT SOCCER BERBASIS ZERO MOMENT POINT SECARA PRAKTIK
Ardhani Rahmadianto, Harianto Adiprasetyo, dan Mark Gabriel Priyono 83

16. RANCANG BANGUN ROBOT HUMANOID SOCCER ABENK_2 PADA KONTES ROBOT SEPAK BOLA INDONESIA 2014
M. Afridon, Depandi Enda, Emizar, Sutrimo .. 90

17. APLIKASI COMPAS CPMS 03 DAN TRIPLE AXIS ACCELEROMETER MMA7361 PADA ROBOT SEPAK BOLA SI RANCAK
Mukhlidi Muskhir, Purwanto, Meri Fernandes, Zul Saputra, dan Adil ivitra 95

18. TIM ICHIRO DALAM KONTES ROBOT SEPAK BOLA INDONESIA 2014
Ilham Budiono, Ilham Laenur Hikmat, Ach Hadi Dahlant, Hanifar Kahira, Muhtadin, Tri Arief Sardjono, Rudi Dikairon .. 100

19. ALGORITMA LOKALISASI DAN NAVIGASI ROBOT DENGAN KOMPAS DAN ENCODER MOTOR
Harish Mahatma Putra, Galih Nugraha .. 104

20. KONTROL POSISI ROBOT OMNI-DIRECTIONAL MENGGUNAKAN METODE GYRODOMETRY
Irfan Affandi, Indra Adji Sulistyijono, Fernando Ardilla 107

21. PENERAPAN ALGORITMA DINAMIK A* UNTUK PENENTUAN JALUR MOBILE ROBOT PADA AREA YANG BELUM DIKETAHUI
Eko Budi Utomo, Muhtadin, Supeno Mardi S.N. Mauridhi Hery P 112

22. OPTIMASI KENDALI PID BERBASIS RBFNN META-MODEL ROBOT MANIPULATOR LENGAN LENTUR DUA-LINK
M. Khairuddin ... 117

23. ALGORITMA TRIPOD GAIT DAN KINEMATIKA BALIKAN PADA ROBOT HEXAPOD
Yudi Isvara, Dinara Enggar Prabakti, Wiharsa Pragitatama 122

24. SISTEM NAVIGASI BERBASIS MAZE MAPPING PADA ROBOT BERODA PEMADAM API
E. Merry S., Muliliady, Nelson M.S. .. 127

25. IMPLEMENTASI REVERSE BRAKE PADA ROBOT BERODA PEMADAM API
Dimas Agus F., Ali Akbar, Asep Hermansyah ... 133

26. PEMANFAATAN FLAME SENSOR MURAH UNTUK MENDETEKSI API PADA ROBOT CERDAS PEMADAM API
Denis Frayogi ... 136

27. LOW COST REMOTE TERMINAL UNIT (RTU) SISTEM SCADA BERBASIS ANDROID
Hendy Rudiyansyah, Sulhanyanto, Adha Imam Cahyadi 140

28. SIMULASI PENENTUAN POSISI 3D QUADCOPTER BERBASIS ENHANCEMENT PARTICLE FILTER USING ANT COLONY OPTIMIZATION
Mohammad Mbed Bachtir, Muhtadin, Supeno Mardi SN, Mauridhi Hery Purnomo 148

29. ROBOT HUMANOID PENARI TARIAN DAERAH INDONESIA DENGAN KASUS TARI LEGONG KERATON
Tio Dwi Laksono, Silvia Anandita, Hanna Izma Azizah 153

30. DEVIATION DIRECTION COMPENSATION OF MAGNETIC FIELD EFFECT USING CIRCLE EQUATION METHOD ON ROBOT EROS (EEPS ROBOSOCER)
FAST BALL DETECTION AND TRACKING FOR HUMANOID SOCCER ROBOT USING SIFT KEYPOINT DETECTOR

Bayu Kanigoro, Widodo Budiharto
School of Computer Science
Bina Nusantara University
Jakarta-Indonesia
Telp.: +628569887384 (bkanigoro, wbudiharto)@binus.edu

Abstract

The main feature for Humanoid Soccer Robots is the ability to vastly detect and tracking the ball in uncontrolled environment. This paper proposes a high speed ball detection and tracking method using SIFT (Scale Invariant Features Transform) Keypoint detector and PID controller for Humanoid Soccer, because the ability to accurately track a ball is important especially for processing high-definition image. We use pan tilt camera system to track and find the position of the ball. The proposed method is able to detect a ball based on its keypoint in 10 ms, determine the position of a ball and kick the ball correctly greater than 80%.

Keywords: ball detection, sift, tracking, flann

1. INTRODUCTION

The humanoid soccer robots is popular today for the contest such as RoboCup Humanoid League and entertainment. The important features of humanoid soccer are accurate, robust and efficient determination and tracking of ball size and location, has proven to be a challenging subset of this task and the focus of much research. With the evolution of robotics hardware and subsequent advances in processor performance in recent years, the temporal and spatial complexity of feature extraction algorithms to solve this task has grown accordingly [1].

In the case of Humanoid soccer, vision systems are one of the main sources for environment interpretation. At the same time many other topics like human-machine interaction, robot cooperation, mission and behavior control give to humanoid robot soccer a higher level of complexity like no any other robots [2]. So the high speed processor with efficient algorithms needed in this issue.

One of the performance factor of a humanoid soccer is highly dependent on its tracking ball and motion ability. The vision module collects information that will be the input for the reasoning module that involves the development of behavior control. Complexity of humanoid soccer makes necessary playing with the development of complex behaviors, for example situations of coordination or differ rent role assignment during the match. There are many types of behavior control, everyone with advantages and disadvantages: reactive control is the simplest way to make the robot playing, but do not permit more elaborated strategies as explained for example in [3]. On the other side behavior-based control, are more complex but more difficult to implement, and enables in general the possibility high-level behavior control, useful for showing very good performances [4]. In this paper we propose the robust system to detect a ball using SIFT keypoint detector and FLANN (Fast Library for Approximate Nearest Neighbour) based matcher, tracking using PID controller then kick the ball after getting the nearest position of the robot with the ball.

2. PROPOSED METHOD

Humanoid soccer robot design based on the vision involves the need to obtain a mechanical structure with a human appearance, in order to operate into a human real world. We propose an embedded system that able to handle high speed image processing, so we use main controller based on the ARM Processor. Webcam and servo controller used to track a ball, and the output of the main controller will communicate with the CMS10 controller to control the actuators and sensors of the robot as shown in fig. 1.
Fig.1 Architecture of our humanoid soccer robot for ball detection and tracking.

The main controller using Odroid that consist of Exynos5 Octa Cortex™-A15 1.6Ghz quad core and Cortex™-A7 quad core CPUs and sufficient memory and ports to be connected with other devices as shown in fig. 2.

Fig.2. Odroid XU-Lite for processing the images from webcam[a]

The ODROID-XU Lite provides the processor running at 1.6GHz. Features of the board include:

- Exynos5 Octa Cortex™-A15 1.6Ghz quad core and Cortex™-A7 quad core CPUs
- PowerVR SGX544MP3 GPU (OpenGL ES 2.0, OpenGL ES 1.1 and OpenCL 1.1 EP)
- 2GB LPDDR3 RAM
- USB 3.0 Host x 1, USB 3.0 OTG x 1, USB 2.0 Host x 4
- Micro HDMI 1.4a output Type-D connector

The architecture of Odroid shown in fig. 3 that very powerful to be used for the next generation of humanoid robot soccer comparing with other very expensive humanoid robots. OpenCV with Machine Learning class for SIFT and FLANN methods run very well in this board.

Fig.3. The architecture of the Odroid [a]

Ball Detection using SIFT Keypoint Detector. Computer vision is one of the most challenging applications in sensor systems since the signal is complex from spatial and logical point of view. An active camera tracking system for humanoid robot soccer tracks an object of interest (ball) automatically with a pan-tilt camera. At previous work, we detect ball based on color (color-based object detector) which is not robust[11]. An object detection system based on SIFT Keypoint detection is based on Machine Learning. The features are invariant to image scaling, translation, and rotation, and partially in-variant to illumination changes and affine or 3D projection.

Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. The first stage of keypoint detection is to identify locations and scales that can be repeatedly assigned under differing views of the same object. Detecting locations that are invariant to scale change of the image can be accomplished by searching for stable features across all possible scales, using a continuous function of scale known as scale space. The scale space of an image is defined as a function, \(L(x, y, \sigma) \), that is produced from the convolution of a variable-scale Gaussian, \(G(x, y, \sigma) \), with an input image, \(I(x, y) \)

\[
L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)
\]

(1)

Where * is the convolution operation in \(x \) and \(y \), and:
$G(x, y, \sigma) = \left(\frac{1}{2 \pi \sigma^2} \right) e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$

To efficiently detect stable keypoint locations in scale space, David G. Low proposed using scale-space extrema in the difference-of-Gaussian function convolved with the image.

$$D(x, y, \sigma) = \left[G(x, y, k\sigma) - G(x, y, \sigma) \right] * I(x, y)$$

$$= L(x, y, k\sigma) - L((x, y, \sigma))$$

Fig. 4. Example of object detection using SIFT Keypoint detector and FLANN based matcher.

To have a good estimation, the object must be in the centre of the image, i.e., it must be tracked. Once there, the distance and orientation are calculated, according to the neck's origin position, the current neck's servomotors position and the position of the camera with respect to the origin resulting of the design [7]. The ball will be track based on the color and webcam will track to adjust the position of the ball to the center of the screen based on the Algorithm 1.

Algorithm 1: Ball Detection, Tracking and Kick the ball
Get input image from the camera
Detect ball using SIFT Keypoint detector
If detected then
Get the center position of the ball
Centering the position of the ball

Move robot to the ball
If ball at the nearest position with the robot then
Kick the ball
endif
endif

PID Controller for Ball Tracking. We use a PID controller for servo to calculates an error value as the difference between a measured [Input] and a desired setpoint. The controller attempts to minimize the error by adjusting [an Output]. The model of PID Controller shown in fig. 4:

![General PID Controller](image)

Fig.5. General PID Controller [8]

The output of a PID controller, equal to the control input to the system, in the time-domain is as follows:

$$u(t) = K_p e(t) + K_i \int e(t) dt + K_d \frac{de}{dt}$$ \hspace{1cm} (4)

3. EXPERIMENTAL RESULTS

The approach proposed in this paper was implemented and tested on a humanoid Robot named Humanoid Robot Soccer Ver 3.0 based on Bioloid Premium Robot and OpenCV 2.4.9.
4. CONCLUSION

In this paper, we introduced the hardware architecture implemented on our humanoid robot soccer. They are based on Odroid XU-Lite that have powerful ability for high speed image processing. We propose robust system using SIFT keypoint detector to detect and track a ball, then kick the ball after getting the nearest position of the robot with the ball. The FLANN based matcher suitable to be used for real situation. For future work, we want improve the ability of robot to battle with the opponent.

5. REFERENCES

Website
[a] www.hardkernel.com