ICIC EXPRESS LETTERS

Volume 8, Number 3, March 2014

CONTENTS

The Effect of Tool Geometry and Cutting Parameters on a Lathing Process 643
Karim Kandamanond

Convolution Gradient Method Based on Fitness-Driven Design Considering Global Information 651
Eri Domoto, Koji Okuhara, Noriaki Koido and Nobuyuki Ueno

A Voltage Controlled Oscillator with Threshold Automatic Compensation 661
Yujiro Harada, Kuniki Fujimoto and Mitsutoshi Yahara

Particle Swarm Optimization with Genetic Operators 669
Liang Zhao, Yantun Li, Yanzhen Li and Jie Zhang

Performance-Adaptive Proportional-Integral Control for a Boiler Control System 675
Yosuke Sakuragi, Takao Sato, Toru Yamamoto, Nozomu Aoki and Yasuo Konishi

Mitigation of Conducted Electromagnetic Interference Emissions in DC-DC Converter 683
Chalayon Jettanasan and Nuchitta Suttisinthong

Health Management Based on Image Sequence Analysis and Social Network Analysis 691
Chuan-Wei Ting, Ching-Yao Wang and Ju-Chin Chen

A Maximum Power Point Tracking Method Based on Particle Swarm Optimization for Photovoltaic Module Arrays with Shadows 697
Kwe-Hsiang Chao and Jyun-Ping Chen

3-D Neutron Tomography Method for Measurement of Soot Deposition in Silicon Carbide Filters 703
Takuro Kawakami, Kousuke Matsushima, Gou Koutaki, Keiichi Uchimura, Glenn Harvel and Jen-Shih Chang

Artificial Immune System for Flexible Manufacturing System Machine Loading Problem 709
Umi Kalsom Yusof, Mohd Nor Akmal Khalid and Ahamad Tajudin Khader

A Workflow Performer-Role Affiliation Networking Knowledge Discovery Algorithm 717
Haksung Kim, Hyun Ahn, Hyeonil Jeong and Kwanghoon Pio Kim

The Effect of Doctor Multi-Sited Practice on Patient Care-Seeking 723
Lupoi Wang, Hongyun Xia, Shengnan Sun and Linda Zhao

Impact of Lightning Travelling Wave Velocity between Space and Steel and Impedance of 115 kV Transmission Tower on Back-Flashover Overvoltage 731
Nuchitta Suttisinthong, Buncha Seewirote, Athapol Ngapitakkul and Chaichan Pothisarn

(Continued)
CONTENTS (Continued)

Estimation of Human Indoor Locomotion Using Microwave Doppler Sensor Array 739
Nozomu Araki, Tatsuya Azechi, Takao Sato and Yasuo Konishi

The Application of FAHP for Outsourcing Project Management of Public Parking Lots 745
Hsin-Lung Liu and Wei-Ling Hsu

T-S Fuzzy Model-Based Switched Control for Two-Wheeled Mobile Robot 753
Chung-Hsun Sun

A Partial Update Particle Swarm Optimization for High-Dimensional Optimization Problems 759
Yasunaga Watanabe, Masataka Kojima, Hidehiro Nakano and Arata Miyamichi

Impact of Lightning Impulse Voltage Waveshape Front Time between 1.2/50 μs and 4/50 μs on Back-Flashover Voltage across Insulator of 230 kV Transmission Tower 765
Athapol Ngaopitakkul and Chaichan Pothisarn

Selection of Proper Input Pattern for Back-Propagation Neural Network Algorithm to Identify the Phase with Fault Appearance in Transformer Windings 771
Surakit Thongsuk, Athapol Ngaopitakkul, Chaiyan Jettanasan, Suhee Bunjongjit and Chaichan Pothisarn

A Design Method for Modified PID Controllers for Nonsquare Time-Delay Plants 779
Takaaki Hagiwara, Kou Yamada, Hsu Hui and Satoshi Aoyama

Analysis of Location and Reservation Trend from Cyber Physical Space 785
Noriaki Koide, Koji Okuhara, Yu Ichisji and Noboru Sonohara

Local Model Network Based Identification Algorithm for Nonlinear Systems 793
Limming Sun, Yujin Yang and Yuanning Ding

A Research Framework and Characteristics of Behavioral Decision-Making in Emergency 801
Xingping Sun, Shuangjiao Fan and Xiangying Yang

Constructing an Appropriate Membership Function Integrating Fuzzy Shannon Entropy and Human’s Interval Estimation 809
Takashi Hasuie, Hideki Katagiri and Hiroe Tsubaki

Extracting Feature Values from Human Gait by Using LPC Cepstrum Analysis for Attribute Recognition 815
Yan cong Su and Hajiue Murao

Obstacles Avoidance for Intelligent Telepresence Robot Using Interval Type-2 FLC 821
Widodo Budiharto, Bayu Kanigor, Margaret Lohy, Muhsin Shodiq, Cecilia Nugraheni, Resmana Lim and Hendi Wicaksono

A k-Representatives Community Detection Algorithm for Social Network 829
Yanxi Lu, Jeng-Shyang Pan, Lijim Yan and Tien Szr Pan

©2014 ICIC International
ISSN 1881-803X
Printed in Japan

CONTENTS

Ellipsoidaee 803
Kreang Permpool

Cognitive Information Frame Based on T-S Fuzzy Sets 811
Yi Yang, Xiao Bao, Guo-Bin Tao, Wenguo Liu, Dongfang Wang and Heng Huang

Medical Imaging Date Using Principal Component Analysis 817
Tadashi Ueda, Hiroshi Taguchi, Yukiyo Maekawa, Yuji Tsuchiya, Hiroshi Arai and Hiroyuki Tanaka

Volume-Based Image Registration 823
Li Han, Yee Lin and Ching-Yung Lin

Short-Term Power Generation Prediction and Time-Series Pattern Recognition 831
Guolian Wang, Shengyu Zeng, Wang Shao, Jianren Jiang, Wenpeng Liu and Zhongde Wang

Robust Power System State Estimation 837
Longkun Sun, Xiaodong Liu, Qian Li, Hang Li, Sheng Wang and Min Li

Prior Estimation 843
Longkun Sun, Hui Li and Xiong Wang

Local Orientation and Feature Selection 851
Yu-Hang Li, Lei Cheng, Hongbiao Guo, Wei Zhang and Kewei Wang

Application of a Novel File Management System 857
Athapol Ngaopitakkul, Chaiyan Jettanasan, Suhee Bunjongjit and Chaichan Pothisarn

Simultaneous and Adaptive Control 867
Tetsuya Kojima, Hiroshi Ito, Masahiro Nakamura, Takeshi Tanaka, Hirosuke Oka and Haruaki Matsumoto

Allocation of Clouds and Workloads 875
Antonio G. Bichara, Mou-Chun Chen, Biswanath Mukherjee, Chih-Ming Hsu and Vasant Honavar

A Design Method for Modified PID Controllers for Nonsquare Time-Delay Plants 883
Takaaki Hagiwara, Kou Yamada, Hsu Hui and Satoshi Aoyama

Multiple-Constraint Feature Selection and Sparse Coding 891
Nghia Tran, Tetsuya Kojima, Hirosuke Oka and Tatsuya Azechi

Data Exploration of Complex Events in Multimodal Storage System 899
Chongde Wang, Xiaowei Wang, Chuanjun Zhang and Xingyun Li

A Trust Transformed Trust in Online Social Network 907
Jin Yin and Haiyan Lin

Knowledge Sharing in Social Network Systems 913
Li Li, Ludong Bai and Wei-Chang Hsu

©2014 ICIC International
ISSN 1881-803X
Printed in Japan
OBSTACLES AVOIDANCE FOR INTELLIGENT TELEPRESENCE ROBOT USING INTERVAL TYPE-2 FLC

WIDODO BUDIHARTO1, BAYU KANIGORO1, MARGARETHA OHYVER1
MUHSIN SHODIQ1, CECILIA NUGRAHENI2, RESMANA LIM3
AND HENDI WICAKSONO4

1School of Computer Science
Bina Nusantara University
Jl. K. H. Syahdan No. 9, Palmerah, Jakarta 11480, Indonesia
{wbudiharto; bkanigor; mohyver; muhsin}@binnus.edu
2Information Technology Department
Parahyangan Catholic University
Jl. Ciumberuk 94, Bandung 40141, Jawa Barat, Indonesia
ceccilia@unjpar.ac.id
3Electrical Engineering Department
Petra Christian University
Siwamlakerto 121-131, Surabaya, Indonesia
resmana@petra.ac.id
4Electrical Engineering Department
Surabaya University
Jl. Ngagel Jaya Selatan 169, Surabaya 60284, Jawa Timur, Indonesia
hendi@ubsy.ac.id

Received May 2013; accepted July 2013

ABSTRACT. Intelligent Telepresence robot is a new trend for communication remotely today, and obstacles avoidance for robot is one of the important research areas. This research reports and presents obstacles avoidance method for intelligent telepresence robot, a custom-build robot system specifically designed for teleconference with multiple people. We propose an interval type 2 FLC (Fuzzy Logic Controller) that is able to handle uncertainties for measuring distance of obstacle to navigate the robot. The robot is controlled using computer networks, so the manager/supervisor at office/industry can direct the robot to the intended person to start a discussion/inspection. We build a web application for controlling the multi-client telepresence robot and open-source video conference system. Experimental result shows the ability of robot to be controlled remotely and to avoid obstacles smoothly and we evaluated its performance.

Keywords: Telepresence robot, Interval type-2 FLC, Obstacle avoidance

1. Introduction. Interval Type-2 Fuzzy Logic Controller is a controller that is ideal for navigation of the telepresence robot because it is able to handle the uncertainties. The idea of a telepresence robot stems from the inherent limitations imposed by traditional video conferencing systems, in which interaction is restricted to the meeting room only. Telepresence robots are already being used in hospitals to allow doctors and specialists to give consultations from afar. T. B. Sheridan shows that progress in robotics depends not only on the change in technology, but also on advances in humans relationships to machines. He said that human supervisory control has the potential to bring robotics out of the laboratory and into the difficult and messy world [13]. Traditionally, telepresence robots can also be used to give people with restricted mobility a new way to outreach and interact beyond their usual living quarters [3, 10, 12]. In office or factory, sometimes manager/supervisor wants to discuss/supervise staffs remotely. So, based on that
situation, telepresence robot with capability of multi-client can be used on that scenario. An assisted teleoperation feature for a Mobile Remote Presence (MRP) system focusing on both the system-oriented dimensions (e.g., autonomous assistance vs. no assistance) and human-oriented dimensions (e.g., gaming experience, locus of control, and spatial cognitive abilities) \((N = 24)\) have been developed [8]. Another research developed a telepresence mobile robot controlled with a noninvasive brain-computer interface to provide a user with presence in remote environments through a mobile robot, with access to the internet [2]. However, so far there is no model for telepresence robot using interval type-2 FLC and web based application framework. State of the art of this research is to propose the Interval Type-2 Fuzzy Logic Controller for obstacles avoidance and web user interface that will be used for telepresence robot named as NUNI. This robot can be used in office/factory with the video conferencing features using WebRTC for controlling the robots on the web and fast movement using omnidirectional mechanism.

This paper reports the complete results of the investigation and is organized as follows: Section 2 describes the design of an intelligent telepresence technology, Section 3 describes the experimental results and discussion, and conclusions are drawn in Section 4.

2. Design of the System.

2.1. Interval type-2 fuzzy logic controller. Fuzzy logic systems (FLS) have been used in different applications with satisfactory performance [9]. The human perception cannot be modeled by traditional mathematical techniques; thus, the introduction of fuzzy set (FS) theory in this modeling has been suitable. Real-world applications are treated, and many sources of uncertainty often appear. Several natures of uncertainties would influence the performance of a system. Type-2 fuzzy logic systems (T2-FLS) make possible to model and handle uncertainties. These are rule based systems in which linguistic variables are described by means of Type-2 fuzzy sets (T2-FSs) that include a footprint of uncertainty (FOU). It provides a measure of dispersion to capture more about uncertainties. While T2-FSs have non-crisp MFs, T1-FSs have crisp membership grades (MGs). A representation of the inference model for T2-FLS is depicted in Figure 1 [11]. It begins with fuzzification, which maps crisp points into T2-FSs. Next, inference engine computes the rule base by making logical combinations of antecedent T2-FS, whose results are implicated with consequent T2-FS to form an aggregated output type-2 fuzzy set. Interval type-2 fuzzy logic, a special case of type-2 fuzzy system, is currently the most widely used for their reduced computational cost.

![Figure 1. Type-2 fuzzy logic systems [6, 11]](image)

An Interval Type-2 Fuzzy Set is one in which the membership grade of every domain point is a crisp set whose domain is some interval contained in \([0,1]\). Consider the rule base of an IT2 FLS consisting of \(N\) rules assuming the following form:

\[
R^n: \text{IF } x_1 \text{ is }
\tilde{X}^n_1 \text{ and } \ldots \text{ and } x_j \text{ is } X^n_j, \text{ THEN } y = Y^n, \quad n = 1, \ldots, N
\]

where \(X^n_i (i = 1, \ldots, I)\) are IT2 FSs, and \(Y^n = [\tilde{y}^n, \tilde{y}^n]\) is an interval. Assume the input vector is \(x' = (x'_1, x'_2, \ldots, x'_j)\) then the computation in an interval IT2 FLS involves the following steps [4, 5, 6]:

1. Compute the support set

\[
\mu_{X^n_i}(x') \quad \text{where } \mu_{X^n_i}(x') = \max \{1 - \text{d}(x', \tilde{X}^n_i), \text{d}(x',
\tilde{X}^n_i)\}
\]

2. Compute the extension set

\[
F^n(x') = \left[\left(\tilde{y}^n, \tilde{y}^n\right) \right]
\]

3. Perform type reduction

\[
y = \tilde{y}^n = \frac{\int_{\tilde{y}^n} \mu_{X^n_i}(x') d\tilde{y}^n}{\int_{\tilde{y}^n} \mu_{X^n_i}(x') d\tilde{y}^n}
\]

\(y\) and \(\tilde{y}^n\) are crisp output and computed output respectively.

4. Compute the defuzzified output

The model of a room environment is illustrated in Figure 2 in which a near infrared sensor and distance sensor are used.

The NUNI camera is used to track the features of the room. The system can capture and track a person walking in the room and communication between two people is possible. The speaker and listener are located in the same room space, this is the current focus of research.

The stereo camera is used to estimate the depth estimation of the room.
1. Compute the membership of x_i' on each:

$$X_i^{u}, \mu_{X_i}^{u}(x_i'), \mu_{X_i}^{l}(x_i'), i = 1, 2, \ldots, I; \ n = 1, 2, \ldots, N$$

where $\mu_{X_i}^{u}(x_i')$ are the upper membership functions, and $\mu_{X_i}^{l}(x_i')$ are the lower membership functions.

2. Compute the firing interval of the n^{th} rule, $F^n(x')$:

$$F^n(x') = [\mu_{X_i}^{u}(x_i') \times L \times \mu_{X_i}^{l}(x_i') \times L \times \mu_{X_i}^{u}(x_i') \times L] \equiv [f^n, f^n], \ n = 1, \ldots, N$$

where f^n and f^n are the lower and upper firing intervals.

3. Perform type-reduction to combine $F^n(x')$ and the corresponding rule consequents using center-of-sets-reducer:

$$y_{cs}(x') = \bigcup_{f^n \in F^n(x')} \frac{\sum_{n=1}^{N} f^n y^n}{\sum_{n=1}^{N} f^n}$$

y_i and y_r can be computed using Karnik-Mendel Algorithms (KMA). It is an iterative and computationally intensive algorithm. The main idea of KMA is to find the switch points for y_i and y_r.

4. Compute the defuzzified output as:

$$y = \frac{y_i + y_r}{2}$$

The model of interval Type-2 Fuzzy Logic for navigation of the robot is depicted in Figure 2 in which a distance between robot and obstacles was measured using three ultrasonic distance sensors [4, 5].

The NUNI Telepresence robot had been designed to have some features in mind. Some of the features are first driving in any direction capability, second using stereo camera to track a person and avoiding obstacle supported by three ultrasonic sensors, and third teleconferencing system which employed one camera pointed forward to a person, microphone and speaker. To be capable of driving in any direction, especially in closed and limited room space, the robot employed holonomic or omni-directional three wheel configuration. The stereo camera placed on the robot has some functions which are object detection, depth estimation, and face tracking system. Multiple obstacle avoidance of the robot

Figure 2. Interval type-2 fuzzy logic for measuring distance to navigate the robot
Figure 3. Visual perception model for NUNI telepresence robot using Minorn 3D stereo camera.

Figure 4. Interconnecting robot client to server through networks

The system architecture of the NUNI Telepresence robot is shown in Figure 4. It has two servers, Teleconference System and Robot Control Server, between Master Control and the robot. Teleconference System uses Google WebRTC as its service and ASP.Net is used for Robot Control Server to serve incoming control packet from Master Control. Figure 4 shows Camera and Audio system send their image and sound streams through Google WebRTC into Internet and Master Control receives them from it. Other important part in Figure 4 is Robot Control Server which gives capability of the robot to be controlled from Master Control by sending messages to it. The part’s messages consist of four instructions which are forward, backward, left and right. When the controller receives the messages from Master Controller through Internet, it passes through the messages to Arduino Based Robot Controller using USB interfaces. The Arduino Based Robot Controller translates the messages to Pulse Width Modulation (PWM) then sends it to the motors. Besides the messages, the controller receives messages from Distance Sensor part shown in Figure 4 to measure between the robot and an obstacle.

3. Experimental Result. The robot was implemented by using Omni-directional robot from Nexus [17] as a base. Some noticeable components of the robot are first it has

Arduino Microcontroller to control the wheels driving with motors. Two sets of sensors and fall component in the dimension is 363x160cm of a aluminum alloy which is quite strong, the DC-to-AC inverter and the camera, the robot has a speed with one meter per second to communicate between Figure 3 and 4. The overall height is 125cm with person while standing on the laptop.

The test was done both on the laptop, Windows 10 and a laptop, openSUSE 12.3. The address entered 192.168.12.1 in the problem because the virtual connection was established, Master Control has sent back image through USB.

Experiments conducted by users to staff person according to eigenspaces with the Vehicle. A set of methods has been developed by professional to avoid the vehicle to avoid the vehicle using integrated Microcontroller at high speed Internet. The delay was 1 Mbps, the result is less than 40 seconds. Other result was shown as better results in Figure 7. The error last than all other methods.

4. Conclusion. The telepresence has been successful with high speed image processing as demonstrated in the experiment to the Master Control using WebRTC protocols as the image.
Arduino Microcontroller with IO Expansion Board as its controller, second it has three wheels driving with omni wheel that gives capability of rotation, and third it has ultrasonic sensors and fall detection sensors as distance measurement and balancer respectively. Its dimension is 363mm x 363mm x 140mm and its body material is made from aluminum alloy which is quite good for holding average laptop computer and a 14" LCD monitor. A DC-to-AC inverter was needed to power 14" monitor from 12V dry battery. The monitor and the camera, which were installed on the monitor, were placed at an aluminum bracket with one meter aluminum arm mounted on the base. A wireless router was needed to communicate between the robot and Master Controller to simulate WAN part on Figure 4. The overall height of the robot is 130cm which allows for natural conversation with a person while standing or being seated.

The test was conducted by running Microsoft IIS and Google Application Engine first on the laptop. When the servers were ready, Master Controller, implemented by using a laptop, opened the application through web browser that supported WebRTC and entered 192.168.1.101 which was the address of both servers to open it. This is not a problem because the servers were running on different ports. After the connections were established, Master controller then received image and sound stream from the robot and sent back image and sound from Master Controller web camera as shown in Figure 6(a).

Experiments of intelligent telepresence robot had been tested by navigating the robot to staff person and to avoid obstacles in the office. Face tracking and recognition based on eigenspaces with 3 images of each person had been used and a database of the images had been developed [14]. Based on the experiment, the system was running very well with the capability to avoid obstacles, recognise people and face tracking. The robot was controlled using integrated web application (ASP.Net and WebRTC) from Master Control. With a high speed Internet connection, simulated using wireless router that had speed around 1 Mbps, the result of video conferencing was noticeable smooth, as shown in Figure 6. Other result was obstacle avoidance using Interval Type-2 fuzzy logic controller depicted in Figure 7. The time efficiency in Table 1 shows that interval type-2 FLS is more efficient than other methods.

4. Conclusions. Interval type-2 fuzzy logic controller and video conferencing system has been successfully developed in this research. The image is processed through image processing as depicted in Figure 6 and sent through Internet network using RTC protocol to the Master Computer. The sound is sent through Internet which uses the same protocol as the image. The Master Computer receives the image and sound from the robot then an
FIGURE 6. Web based application using WebRTC for teleconference system 6(a) and teleconference with a client using intelligent telepresence robot 6(b)

FIGURE 7. The path generated by robot to avoid obstacles using interval type-2 fuzzy logic controller

TABLE 1. Comparison for time efficiency between fuzzy logic and interval type-2 FLS running based on Figure 7

<table>
<thead>
<tr>
<th>No</th>
<th>Fuzzy Logic</th>
<th>Interval Type-2 FLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.0s</td>
<td>10.5s</td>
</tr>
<tr>
<td>2</td>
<td>6.5s</td>
<td>5.5s</td>
</tr>
<tr>
<td>3</td>
<td>4s</td>
<td>4s</td>
</tr>
</tbody>
</table>

operator can hear and watch an image. A distance between the robot and the person is determined by distance sensor located in the base of the robot. Figure 7 depicted the path generated by the robot to avoid obstacles based on the Type-2 Fuzzy Logic Controller then we conclude that this controller can successfully navigate the robot smoothly.

Acknowledgment. This research based on the research grant from NUNI (Nationwide University Network in Indonesia), supported by Bina Nusantara University, Parahyangan University, Surabaya University and Petra Christian University Indonesia.
REFERENCES

