Content

CONFERENCE SCHEDULE ... 12
GENERAL INFORMATION FOR PARTICIPANTS 16
CONFERENCE ORGANIZATION .. 18
ACEAIT INTERNATIONAL COMMITTEE BOARD 18
ISFAS INTERNATIONAL COMMITTEE BOARD 19
KEYNOTE SPEECH ... 21
ORAL SESSIONS ... 22

CIVIL ENGINEERING I ... 22
ACEAIT-2713 .. 24
ACEAIT-2898 .. 33
ACEAIT-2613 .. 42
ACEAIT-3006 .. 52
ACEAIT-3112 .. 62
ACEAIT-3014 .. 64

BIOMEDICAL ENGINEERING ... 75
ACEAIT-2789 .. 77
ACEAIT-2833 .. 88
ACEAIT-2868 .. 98
ACEAIT-2706 .. 106
ACEAIT-2828 ... 107
ACEAIT-2849 ... 114
ACEAIT-2869 ... 115

ENVIRONMENTAL ENGINEERING I ... 123
ACEAIT-2840 ... 125
ACEAIT-2942 ... 139
ACEAIT-2767 ... 151
ACEAIT-2834 ... 153
ISFAS-360 ... 163
ISFAS-363 ... 174
Comparison of the Effects of Some VoIP Codecs on the Bandwidth and Quality of Service
Sami Bashir Mohamed Abuharsa Misurata University-Libya
Ahlam Mahamed b College Of Industrial Technology

The Framework of Vision-Based Grasping for Manipulator using Object Features
Widodo Budiharto Bina Nusantara University
Bayu Kanigoro Bina Nusantara University
Anita Rahayu Bina Nusantara University

High-Capacity Steganography Using MRF-Synthesized Cover Images
Chaur-Chin Chen National Tsing Hua University
Wei-Ju Lai National Tsing Hua University

Developing Animated Pedagogical Agents in Java Concept Learning
Adib Sarkawi Universiti Teknologi Mara
Aiza Johari Universiti Teknologi Mara
Awang Rozaimi Awang Shuib Universiti Teknologi Mara

Real-time Acquisition for Microscopic Image Analysis
Thanaphong Wattanaphong Thammasat University
Chalje Charoenlarpnopparut Thammasat University
Tsuyoshi Isshiki Tokyo Institute of Technology
The Framework of Vision-Based Grasping for Manipulator using Object Features

Widodo Budiharto*, Bayu Kanigoro* and Anita Rahayu*
*School of Computer Science, Bina Nusantara University,
Jl. KH Syahdan no.9, Jakarta-Indonesia

*Corresponding Author: wbudiharto@binus.edu

Abstract

The ability for a manipulator to grasp an object based on vision is very important. Vision-based grasping using stereo vision is proposed in this paper in order a manipulator able to pick and put an object in a good manner. We propose a framework, fast algorithm and object features for an object and color marking at the gripper in order the system knows the position of the gripper and the object (pose estimation). Experimental result presented and we analyze the result.

Keyword: manipulator, stereo vision, grasping

1. Introduction

One of the most common of manipulation tasks is grasping an object. Tasks performed by humans involve some form of grasping action. In the absence of feedback, the grasping action cannot be completed effectively. A human being grasps an object almost invariably with the aid of vision. We use visual information to identify and locate the object, and then decide how to grasp them.

Most work in robotic manipulation assumes a known 3-D model of the object and the environment, and focuses on designing control and planning methods to achieve a successful and stable grasp in simulation environments. Grasping is usually preceded by a number of tasks that affect the final grasping action. The sequence of steps involved is:

1. The movement of the end-effector from a given position to within a reaching position from the object.
2. The estimation of grasp points and orientation of the end-effector to perform the grasp operation.
3. The grasping action, once the end effector is in the appropriate position.

228
Based on the previous literature (visual-servoing) is huge and largely unorganized. In image-based visual servoing, 2D image measurements are used directly to estimate the desired movement of the robot. Typical tasks like tracking and positioning are performed by reducing the image distance error between a set of current and desired image features in the image plane. A variety of methods have been proposed to solve vision-based manipulation [1-5].

They use vision to aid just one of the above mentioned steps. In the past, most approaches to robotic grasping [6][7] assume availability of a complete 3-D model of the object to be grasped. In practice, however, such a model is often not available—the 3D models obtained from a stereo system are often noisy with many points missing, and 3-D models obtained from a laser system are very sparse. This makes grasping a hard problem in practice. In more general grasping, Kamon et al. [8] used Q-learning to control the arm to reach towards a spherical object to grasp it using a parallel plate gripper.

For grasping 2D planar objects, most prior work focuses on finding the location of the fingers given the object contour, which one can find quite reliably for uniformly colored planar objects lying on a uniformly colored table top. Using local visual features (based on the 2-d contour) and other properties such as force and form closure, the methods discussed below decide the 2D location at which to place the fingertips (two or three) to grasp the object.

Edsinger and Kemp [9] grasped cylindrical objects using a power grasp by using visual servoing and do not apply to grasping for general shapes. An inverse kinematic solver is proposed in [10] to find all joint angles for given position of the effectors on the manipulator.

The target object is recognized by color segmentation. The 3D position is computed by the stereo vision system after contour extraction.

Inverse kinematics of manipulator and object location are the key technology for arm robot. We study various visual feedback methods from previous literature and develop a new model for grasping an object. We know that Extraction of image information and control of a robot are two separate tasks where at first image processing is performed followed by the generation of a control sequence. A typical example is to recognize the
object to be manipulated by matching image features to a model of the object and compute its pose relative to the camera (robot) coordinate system.

In this paper we develop a simple framework that uses stereo vision for all the steps that result in the grasping and movement action. First the target object is recognized by the vision system which then estimates the 3D pose of the object. Based on this information, the controller coordinates to move the arm robot to grasp the object/bottle. The framework proposed in this experiment shown in fig. 1 below, where the stereo camera for pose estimation attached about 50cm at the side of manipulator.

![Diagram](image)

Figure 1. Framework for vision-based grasping manipulator using stereo vision

2. Framework of Vision-Based Manipulator
2.1 4 DOF Manipulator
We developed a framework of vision-based arm robot using 4 DOF (Degree of Freedom) arm robot from Lynxmotion that able to delivers fast, accurate, and repeatable movement. The robot features: base rotation, single plane shoulder, elbow, wrist motion, a functional gripper, and optional wrist rotate as shown in figure 2. This robotic arm is an affordable system with a time tested rock solid design that will last and last.
Figure 2. 4 DOF arm robot using stereo vision used in the experiment

The specification of this arm robot:
Base: Height = 6.9 cm
Hand/Grip: Max Length (No Wrist Rotate) = 8.7 cm
Hand/Grip: Max Length (With LW Rotate) = 11.3 cm
Hand/Grip: Max Length (With HD Rotate) = 10.0 cm
Length: Forearm = 12.7 cm
Length: Arm = 11.9 cm

2.2 Stereo Vision
We have developed a system for object detection using Haar cascade classifier and depth estimation for measuring distance of object using stereo camera Mixruz 3D. We use OpenCV 2.4.6[11] for image processing. OpenCV and a color filter algorithm are used to extract the specific color features of the object. Then, the 3D coordinates of the object to be grasped are derived by the stereo vision algorithm, and the coordinates are used to guide the robotic arm to the approximate location of the object using inverse kinematics. In the stereo imaging model, the tree-dimensional points in stereo camera frame are projected in the left and the right image frame [13]. On the contrary, using the projection of the points onto the left and right image frame, the three-dimensional points positions in stereo camera frame can be located. Figure 3 shows the stereo imaging model using the left front image frame LF and right front image frame RF [6].

231
By using stereo vision, we can obtain the position of object, then we can calculate and estimate the distance of the object. The three-dimensional point in stereo camera frame can be reconstructed using the two-dimensional projection of point in left front image frame and in right front image frame using formula:

\[
\begin{bmatrix}
\mathbf{sc} q_x \\
\mathbf{sc} q_y \\
\mathbf{sc} q_z
\end{bmatrix} = \frac{2}{w q_x - d q_z} \begin{bmatrix}
\frac{1}{a} (w q_x + d q_z) \\
q_y \\
q_z
\end{bmatrix}
\]

(1)

Note that \(^{li} q_x = ^{li} q_y \).

2.3 Grasping Model

Grasp determination is probably one of the most important questions from manipulation point of view. Usually, the object is of unknown shape. The purpose of control design is to make the robot respond in a predictable and desirable fashion to a set of input signals. In our model, we propose a simple way using pose estimation principle, if we know the distance of the bottle then move the arm to that position, then when the center point of a bottle exactly meet the center point of the gripper, then it means that is the time for grasping the bottle/object as shown in figure 3:
Figure 3. Finding the center of the bottle using object features (a) and color marking for indicating the position of gripper with an object (b)

The proposed algorithm to detect an object/bottle, grasp it and move to the destination is shown below:

Algorithm 1: vision-based grasping for manipulator

do

detect the object

if object/bottle detected then

begin

find position of the object

move arm robot to the object

move the gripper to the center of the object

if the position equal

grasp the object

else

move to gripper to the center of the object

end

endif

move the object to destination

go to the initial position

loop
An environment consists of a variety of objects, such as the robot itself, walls, floor, tables, objects to be grasped, etc. In order to successfully move the arm without hitting an obstacle, we provide 1 distance sensor at the gripper.

3. Experimental Result
This paper has studied the vision-based arm robot with the goal of this project is to build a general purpose household robot. To determine the state of the object, the "good" grasp position should be first determined. The experiment conducted at our lab to grasp and move a bottle to the destination. We use Lynxmotion RIOS (Robotic Arm Interactive Operating System) SSC-32 software to configure and control the arm robot as shown in figure 4:

![Image](image.png)

Figure 4. Configuring and control the board of arm robot using RIOS SSC-32 Software[12]

After configuring and calibrating the servos of manipulator. We put an object/bottle in front of the arm robot to be grasped and move to other position. Program for object detection of an object successfully developed with OpenCV and the manipulator able to grasp it.
Based on our experiment we get the expected result as shown in table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Action</th>
<th>Success</th>
<th>failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify the object as bottle</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>Grasping an object correctly</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>Estimate the distance of the</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>object/bottle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on table 1, shows that with the action identify the object as bottle, percentage for success is 100% and percentage for failure is 0%. With the action grasping an object correctly and estimate the distance of the bottle, percentage for success is 90% and percentage for failure is 10%. The accuracy and robustness of the system and the algorithm were tested and proven to be effective in real scenarios.

4. Conclusion

We have proposed a model for vision-based grasping for manipulator using stereo vision. The position of the object estimated using stereo vision and color marking at
the gripper used as indicator for the system to deciding grasp the object. Based on the experiment we see that our model able to be implemented for vision-based arm robot.

5. Acknowledgment
We would like to say thank you to the BINUS University for providing the lab for conduct this experiment.

References
[12] Lynxmotion.com