Deep Learning for Text Processing with Focus on

Word Embedding:
Concept and Applications
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A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer —_—

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer —

3 Raw sensory inputs (roughly)




Five Reasons to Explore
Deep Learning



#1 Learhing representations

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/...

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning
Our computers should do the same

Deep learning provides a way of doing this
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#2 The need for distributed
represev\&ati‘.ons

Current NLP systems are incredibly fragile because of
their atomic symbol representations
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#2 The need for distributional &
distributed representations

Learned word representations help enormously in NLP
They provide a powerful similarity model for words

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing
more dimensions of similarity
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Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models



Disktributed representations deal with
the curse of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

Classic solutions:
* Manual feature design

e Assuming a smooth target
function (e.g., linear models)

 Kernel methods (linear in terms
of kernel based on data points)

3 dimensions:
> 1000 positions!

Neural networks parameterize and
learn a “similarity” kernel



#3 Uhsupervi'.secl feature and
weight Learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions
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#4 Leariing mul.l:ipl.e levels of
representati;ou

Biologically inspired learning

The cortex seems to have a generic
learning algorithm

The brain has a deep architecture

Task 1 OutputJQ Task 2 Output ) Task 3 Output

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow
combinatorial sharing of statistical strength

Insufficient model depth can be

exponentially inefficient Linguistic Input
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Handling the recursivity of human
Language

Human sentences are composed 5.*1-1 it z:l
from words and phrases —{$ e Hae
0 0 o

We need compositionality in our X1 X, X1

ML models eo0e| (ecee| |ccoe
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repeatedly on different church
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Representations
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#5 Nhlj NOWwW ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful @

What has changed?

*  New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

*  More efficient parameter estimation methods

* Better understanding of model regularization
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Natural Language Processing

* Mostly works with text data.
» Could be applied to music, bioinformatics, speech, etc.

» Machine learning perspective: NL is a sequence of
variable-length sequences of high-dimensional vectors.

4

How to best represent the word for learning?



Word Embeddings

* A set of language modeling and feature learning
techniques in natural language processing.

* Mapped words or phrases from the vocabulary to vectors
of real numbers.

* Mathematical embedding from a space with one
dimension per word to a continuous vector space with
much lower dimension.



One-Hot Encoding

V = {zebra, horse, school, summer}

vézebra = [1, O, O, O]
v(horse) = , 1, 0, ©
vgschool = [0, 0, 1, O]
v(summer) = [0, O, O, 1]
(+) Pros:
Simplicity
(-) Cons:

Can be memory inefficient
Notion of "word similarity" is undefined



Distributional Representation

|s there a representation that preserves the similarities of word
meanings”?
d(v(zebra), v(horse)) < d(v(zebra), v(summer))

“You shall know a word by the company
it keeps” - John Rupert Firth

Paris is the capital of France.

Berlin is the capital of Germany.

Paris : France :: Berlin : Germany

v(Paris)-v(France) = v(Berlin)-v(Germany)



Distributional Representation

he curtains open and the stars shining in on the barely
ars and the cold , close stars " . And neither of the w
rough the night with the stars shining so brightly , it
made in the light of the stars . It all boils down , wr
surely under the bright stars , thrilled by ice-white
sun , the seasons of the stars 7 Home , alone , Jay pla
m is dazzling snow , the stars have risen full and cold
un and the temple of the stars , driving out of the hug
in the dark and now the stars rise , full and amber a
bird on the shape of the stars over the trees in front
But I could n’t see the stars or the moon , only the
they love the sun , the stars and the stars . None of
r the light of the shiny stars . The plash of flowing w
man ’s first look at the stars ; various exhibits , aer
rief information on both stars and constellations, inc

www.cs.ox.ac.uk/files/6605/aclVVectorTutorial.pdf



https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation
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Distributional Representation

(+) Pros:
Simplicity (BOW assumption)
Has notion of word similarity

(-) Cons:
Can be memory inefficient

Latent Semantic Analysis, Latent Dirichlet Allocation, Self-organizing map,
Hyperspace Analog to Language, Independent Component Analysis,
Random Indexing.



Distributed Representation

V Is a vocabulary
Wi el

U(Wi) € R"

v(w;) Is a low-dimensional, learnable,
dense word vector



Distributed Representation
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http://colah.github.io/posts/2014-07-NLP-RNNs-Representations

Distributed Representation

(+) Pros:
Has notion of word similarity
Memory Efficient (low dimensional)

(-) Cons:
Computationally intensive



Distributed Representation as a Lookup Table

W is a matrix whose rows are v(w;) € R"

v(w;) returns it" row of W



Statistical Language Model

A sentence s = (x{, Xy, , XT)

How likely Is s?
P(X1, X2, xT)

According to the chain rule (probabillity)

T
p(xq, X0, , X7) = 1_[ p(x¢|xq, X2, , XT)
t=1



N-gram Models

n-th order Markov assumption

p(xq, %, ", xT) = 1_[ D(Xe|Xe—py o) Xp—q)
t=1

Bigram model of s = (a, cute, bird, is, on, the, tree,.)
1. How likely does ‘a’ follow ‘<S>'?

2. How likely does ‘cute’ follow ‘a’?

3. How likely does ‘is’ follow ‘bird’?
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n-gram Mode
n-t

S

N order Markov assumption

T
p(xq, %, , xT) = 1_[ D(Xe|Xe—py o) Xp—q)
t=1

Bigram model of s = (a, cute, bird, is, on, the, tree,.)

p(WiIWi—n-1y -

count(wi_(n_l) y Wi, Wi)

o Wi_l) - COunt(Wi—(n—l) » T Wi—l)

the counts are obtained from a training corpus



n-gram Models

(+) Pros:
Computationally efficient
(-) Cons:
Data sparsity
Lack of generalization:
[ride a horse], [ride a llama], [ride a zebra]



Word Embedding versus Other
Representations

* They use words as their context
 More natural form of semantic similarity
e Human understanding perspective

* The technique of choice for vectorizing text for NLP Tasks:
e Text classification
e Document clustering
e Part of speech tagging
 Named entity recognition
e Sentiment analysis



word2vec vs one-hot
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Reasoning with word vectors
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CBOW vs Skip-gram

e CBOW:

e Predicts the current word given a window of surrounding words (context)

e The order of the context words does not influence the prediction (bag of
words assumption)

e Skip-gram:

e Predict the surrounding words (context) given the center word.

CBOW is faster but skip-gram does a better job at
predicting infrequent words.



Skip-gram implementation in Keras

Takes in a word vector and a context

I love green eggs and ham. .
vector, learns to predict one or zero

([1, green], love) depending whether it sees a positive or

([ove, eggs], green) Er:;;“”g negative sample.

([green, and], eggs) (Pairs) ord context
Deliverables Embedding Embedding

(love, I), (love, green),

(green) [OU@)} (green? eggs)} Expected Dot Product

(eggs, green), (eggs, and), Prediction Dense

Label (Mone, 0/ 1)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Skip-gram implementation in Keras

from keras.
from keras.
from keras.
from keras.

vocab_size
embed_size

word_model
word_model.

layers
layers
layers
models

5000
300

import Merge

.core import Dense, Reshape
.embeddings import Embedding

import Sequential

= Sequential()

add(Embedding(vocab_size, embed_size,

embeddings_initializer="glorot_uniform"”,

input_length=1))

word_model.add(Reshape((embed_size, )))

context_model = Sequential()

context_model.add(Embedding(vocab_size, embed_size,

embeddings_initializer="glorot_uniform”,
input_length=1))

context_model.add(Reshape((embed_size,)))

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

word
(None, 1)

l

Embedding

context
(Mone, 1)

Embedding

Dot Product

Dense

Label (Mone, 0 f 1)




Skip-gram implementation in Keras

model = Sequential()

model.add(Merge([word_model, context_model], mode="dot"))
model.add(Dense(1l, init="glorot_uniform"”, activation="sigmoid"))
model.compile(loss="mean_squared_error"”, optimizer="adam")

from keras.preprocessing.text import *
from keras.preprocessing.sequence import skipgrams
text = "I love green eggs and ham ."

tokenizer = Tokenizer()
tokenizer.fit_on_texts([text])

word2id

tokenizer.word_index

id2word {v:k for k, v in word2id.items()}

word

(Mone, 1)

l

Embedding

context
(Mone, 1)

Embedding

Dot Product

Dense

Label (Mone, 0/ 1)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Skip-gram implementation in Keras

wids = [word2id[w] for w in text_to_word_sequence(text)]

pairs, labels = skipgrams(wids, len(word2id))

print(len(pairs), len(labels))

for 1 in range(1@):

print("({:s} ({:d}), {:s} ({:d})) -> {:d}".format(

id2word[pairs[i][@]], pairs[i][e],
id2word[pairs[i][1]], pairs[i][1],
labels[1i]))

(and (1), ham (3)) -> ©

(green (6), i (4)) -> 0

(love (2), i (4)) -> 1

(and (1), love (2)) -> ©

(love (2), eggs (5)) -> ©

(ham (3), ham (3)) -> @ The first 10 of 56 (pair, label)
(green (6), and (1)) -> 1

(eggs (5), love (2)) -> 1

(i (4), ham (3)) -> ©

(and (1), green (6)) -> 1

word context
(Mone, 1) (Mone, 1)
Embedding Embedding

Dot Product

Dense

Label (Mone, 0/ 1)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW implementation in Keras

I love green eggs and ham.

({1, green], love)
([love, eggs], green) 1[')r:t|;1|ng
([green, and], eggs) { (Pairs)

/
J

(love, I), (love, green), w
(green, love), (green, eggs), Expected

(eggs, green), (eggs, and), { Prediction

/
J

Takes the context words as input
Predicts the target word

context words
[Mone, 2*window_size)

Embedding

Deliverables

(Mone, 2*window_size
embed size)

Lambda

* (Mone, embed_size)

Dense

l (Mone, vocab_size)

target word id =
softmax{output])

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW implementation in Keras

from keras.models import Sequential

from keras.layers.core import Dense, Lambda
from keras.layers.embeddings import Embedding
import keras.backend as K

context words
5000 [None, 2*window_size)

300
window_size = 1

vocab_size

embed_size

Embedding
model = Sequential() . .
. . ; . . . (Mone, 2*window_size
model.add(Embedding(input_dim=vocab_size, output_dim=embed_size, embed size)
embeddings_initializer="glorot_uniform’, Lambda

input_length=window_size*2))
* (Mone, embed_size)

model.add(Lambda(lambda x: K.mean(x, axis=1), output_shape= (embed_size,)))
model.add(Dense(vocab_size, kernel_initializer='glorot_uniform', activation='softmax')) Dense

(Mone, vocab_size)
model.compile(loss="'categorical_crossentropy', optimizer="adam")

target word id =
softmax{output])

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

sequence of word IDs
(None, 1, maxlen)

Embedding

¢ (Mone, embed _size, maxlen)

ConvolutionlD

¢ (Mone, num_steps, num_filters

GlobalMaxPoolinglD

¢ (Mone, num_filters)

Dense

¢ (MNone, 2)

context words
[Mone, 2*window_size)

Embedding

(Mone, 2*window_size
embed size)

Lambda

* (Mone, embed_size)

Dense

l (Mone, vocab_size)

target word id =
softmax{output)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

from keras.layers.core import Dense, Dropout, SpatialDropoutlD
from keras.layers.convolutional import Conv1D

from keras.layers.embeddings import Embedding

from keras.layers.pooling import GlobalMaxPoolinglD
from kera

s.models import Sequential

from keras.preprocessing.sequence import pad_sequences
from keras.utils import np_utils

from sklearn.model_selection import train_test_split
import collections

import matplotlib.pyplot as plt

import nltk

import numpy as np

np.random.seed(42)

INPUT_FILE = "../data/umich-sentiment-train.txt"
VOCAB_SIZE = 5000
EMBED_SIZE = 1@

NUM_FILTERS = 256
NUM_WORDS = 3

BATCH_SIZE
NUM_EPOCHS

64
20

sequence of word IDs
(Mone, 1, maxlen)

Embedding

¢ (MNone, embed_size, maxlen)

ConvolutionlD

¢ (Mone, num_steps, num_filters

GlobalMaxPoolinglD

¢ (Mone, num_filters)

Dense

¢ (Mone, 2)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

counter = collections.Counter()
fin = open(INPUT_FILE, "rb")
maxlen = @

for line in fin: sequence of word IDs
_, sent = line.strip().split("t") (None, 1, maxlen)

words = [x.lower() for x in nltk.word_tokenize(sent)]

Embedding

if len(words) > maxlen:
maxlen = len(words) ¢ (Mone, embed_size, maxlen)

for word in words:

ConvolutionlD

counter[word] += 1
fin.close() ¢ (Mone, num_steps, num_filters

GlobalMaxPoolinglD

word2index = collections.defaultdict(int)
for wid, word in enumerate(counter.most_common(VOCAB_SIZE)): ¢ (Mone, num_filters)

word2index[word[@]] = wid + 1
vocab_size = len(word2index) + 1 Dense
index2word = {v:k for k, v in word2index.items()} ¢ (None, 2)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

xs, ys = [1, [] sequence of word IDs
fin = open(INPUT_FILE, "rb") (None, 1, maxlen)
for line in fin: Embedding

label, sent = line.strip().split("t")
ys.append(int(label))

¢ (Mone, embed_size, maxlen)

ConvolutionlD

words = [x.lower() for x in nltk.word_tokenize(sent)]
wids = [word2index[word] for word in words] J,{Nﬂﬂe,ﬂu"LﬁtEP& num_filters

xs.append(wids)

GlobalMaxPoolinglD

fin.close() ¢ {(None, num_filters)

X = pad_sequences(xs, maxlen=maxlen)

Y = np_utils.to_categorical(ys) Dense

Xtrain, Xtest, Ytrain, Ytest = train_test_split(X, Y, test_size=0.3, random_state=42) i.{”°"e’2]

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

model = Sequential()

model.add(Embedding(vocab_size, EMBED_SIZE, input_length=maxlen)
model.add(SpatialDropoutlD(Dropout(9.2))) sequence of word IDs
model.add(ConviD(filters=NUM_FILTERS, kernel size=NUM WORDS, (None, 1, maxien)
activation="relu")) Embedding
model.add(GlobalMaxPoolinglD())
model.add(Dense(2, activation="softmax"))

¢ (Mone, embed_size, maxlen)

ConvolutionlD

model.compile(loss="categorical_crossentropy"”, optimizer="adam", lr{Nnne,nunlﬁtepg,nquﬁ“erg
metrics=["accuracy”])
history = model.fit(Xtrain, Ytrain, batch_size=BATCH_SIZE, GlobalMaxPooling1D
epochs=NUM_EPOCHS, ¢ (Mone, num_filters)
validation_data=(Xtest, Ytest))
Dense
¢ (Mone, 2)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




CBOW from the scratch in Keras

Epoch 9/20

4960/4960 [
Epoch 10/20

4960/4960 [

Epoch 11/20

4960/4960 [
Epoch 12/20

4960/4960 [

Epoch 13/20

4960/4960 [

Epoch 14/20

4960/4960 [
Epoch 15/20

4960/4960 [

Epoch 16/20

4960/4960 [
Epoch 17/20
4960/4960 [

Epoch 18/20

4960/4960 [

Epoch 19/20

4960/4960 [
Epoch 20/20
4960/4960 [

2126/2126 |

Test score: 0.031, accuracy: 0.986

]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s - loss
]-3s-loss
]-3s - loss

]-0s

:0.0337 - acc

:0.0369 - acc:

:0.0331 - acc:

:0.0289 - acc

:0.0261 - acc:

:0.0261 - acc:

:0.0355 - acc

:0.0247 - acc

:0.0249 - acc:

:0.0299 - acc:

:0.0282 - acc

:0.0401 - acc:

:0.9855 - val_loss:
0.9843 - val_loss:
0.9881 - val_loss:
:0.9879 - val_loss:
0.9901 - val_loss:
0.9895 - val_loss:
:0.9857 - val_loss:
:0.9893 - val_loss:
0.9891 - val_loss:
0.9895 - val_loss:
:0.9887 - val_loss:

0.9839 - val_loss:

0.0263 - val_acc:
0.0277 - val_acc:
0.0308 - val_acc:
0.0291 - val_acc:
0.0305 - val_acc:
0.0310 - val_acc:
0.0307 - val_acc:
0.0283 - val_acc:
0.0329 - val_acc:
0.0285 - val_acc:
0.0287 - val_acc:

0.0311 - val_acc:

0.9882

0.9878

0.9878

0.9882

0.9878

0.9859

0.9873

0.9868

0.9854

0.9882

0.9882

0.9878

sequence of word IDs
(Mone, 1, maxlen)

Embedding

¢ (Mone, embed_size, maxlen)

ConvolutionlD

¢ (Mone, num_steps, num_filters

GlobalMaxPoolinglD

¢ (Mone, num_filters)

Dense

¢ (Mone, 2)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




e Both are fundamentally
similar:

G|Ove VS WO rd ZveC e Capture local co-

occurrence statistics

context features context .
(neigh bor;)
* Capture distance
words wordd featureb  feature between embedding
word l context vector (analogies)
context = word *x matrix
l co=0CCuUlrrence l featu_re
matrix U=
word context context words
(None, 1) {Mone, 1) [None, 2*window_size)

e Glove : l

. Count_based Embedding Embedding Embeddi:zone o
e Capture global co- —Egmbed el
occurrences statistics pet product T one, embed_size)
e Requires upfront pass Dense Dense
through entire dataset. l l (None, vocab._size)

Label {(None, 0/ 1)
target word id =

softmax{output)



Glove vs Word2vec

* GloVe generally shows higher accuracy than word2vec.
* GloVe is faster to train if use parallelization
* Python tooling for GloVe is not as mature as for word2vec.

 The only tool available to do this as of the time of writing is the
GloVe-Python project (https://github.com/maciejkula/glove-
python), which provides a toy implementation for GloVe on
Python



Fine-tune learned embedding (word2vec)

New
INPUT _FILE = "../data/umich-sentiment-train.txt" € Lo
WORD2VEC_MODEL = "../data/GoogleNews-vectors-negative3eo0.bin.gz" Training
VOCAB_SIZE = 5000 Data
EMBED SIZE = 300
MUM_FILTERS = 256

Learned

NUM_WORDS = 3
BATCH SIZE = 64 Model

NUM_EPOCHS = 1@

# load word2vec model
word2vec = Word2Vec.load word2vec format(WORD2VEC MODEL, binary=True)
embedding weights = np.zeros((vocab sz, EMBED SIZE))
for word, index 1n word2index.items():
try:
embedding weights[index, :] = word2vec[word]
except KeyError:
pass

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Fine-tuned learned embedding (word2vec)

model = Sequential()

model.add(Embedding(vocab sz, EMBED SIZE, input length=maxlen,
weights=[embedding weights]))

model.add(SpatialDropoutlD(Dropout(8.2)))

model.add(ConviD(filters=NUM FILTERS, kernel size=NUM WORDS,

activation="relu"))
model.add(GlobalMaxPoolinglD())
model.add(Dense(2, activation="softmax"))

model.compile(optimizer="adam", loss="categorical crossentropy"”,
metrics=["accuracy"”])
history = model.fit(Xtrain, Ytrain, batch size=BATCH SIZE,
epochs=NUM_EPOCHS,
validation data=(Xtest, Ytest))

score = model.evaluate(Xtest, Ytest, verbose=1)
print(“"Test score: {:.3f}, accuracy: {:.3f}".format(score[@], score[1]))

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Fine-tuned learned embedding (word2vec

((4960, 42), (2126, 42), (4960, 2), (2126, 2))
Train on 496@ samples, validate on 2126 samples

Epoch 1/1e@

4960/4960@ [=====z====z=======z=z==z=z==z===z======] - 75 - loss: ©.1766 - acc: 0.9369 - val_loss: ©.0397 - val_acc: ©.9854
Epoch 2/1e

4960/4960 [================s======s=======] - 7s - loss: 9.0725 - acc: ©.9706 - val_loss: ©.0346 - val_acc: ©.9887
Epoch 3/1e

4960/4960 [============================z==] - 7s - loss: ©.0553 - acc: ©.9784 - val_loss: ©.0210 - val_acc: ©.9915
Epoch 4/10

496@/4960 [=====z=======z========z==========] - 7s - loss: ©.0519 - acc: ©.9790 - val_loss: ©.0241 - val_acc: ©.9934
Epoch 5/1@

4960/4960 [==============================] - 7s - loss: ©.0576 - acc: ©.9746 - val_loss: ©.0219 - val_acc: ©.9929
Epoch 6/18

4960/4960 [=====z====z========z==z=z=z====z===z==] - 75 - loss: ©.8515 - acc: 0.9764 - val_loss: ©.0185 - val_acc: ©.9929
Epoch 7/10

496@/4960 [=====z=======z======z==z=====z=z==z=z] - 7s - loss: ©.0528 - acc: ©.9790 - val_loss: ©.0204 - val_acc: ©.9920
Epoch 8/10

4960/496@ [==============================] - 7s - loss: ©.0373 - acc: ©.9849 - val_loss: ©.0221 - val_acc: ©.9934
Epoch 9/1e

4960/4960 [=====z====z========z==z=zz===z=z===z==] - 75 - loss: ©.0360 - acc: ©.9845 - val_loss: ©.0194 - val_acc: ©.9929
Epoch 1@/10

496@/4960 [=====z=======z======z==z=====z=z==z=z] - 7s - loss: ©.0389 - acc: ©.9853 - val_loss: ©.0254 - val_acc: ©.9915
2126/2126 [=============================z] - 1s

Test score: ©.825, accuracy: ©.993

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Fine-tune learned embedding (GloVe)

Learned
Model

GLOVE_MODEL = "../data/glove.6B.300d.txt" <=

word2emb = {}
fglove = open(GLOVE MODEL, "rb"™)
for line in fglove:
cols = line.strip().split()
word = cols[@]
embedding = np.array(cols[1:], dtype="float32")
word2emb[word] = embedding

fglove.close()

embedding weights = np.zeros((vocab sz, EMBED SIZE))
for word, index in word2index.items():
try:
embedding weights[index, :] = word2emb[word]

except KeyError:
pass

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Fine-tune learned embedding (GloVe)

(4960, 42), (2126, 42), (4960, 2), (2126, 2))

Train on 4960 samples, validate on 2126 samples

Epoch 1/10

4960/4960 [
Epoch 2/10

4960/4960 [

Epoch 3/10

4960/4960 [

Epoch 4/10

4960/4960 [

Epoch 5/10

4960/4960 [

Epoch 6/10

4960/4960 [
Epoch 7/10

4960/4960 [

Epoch 8/10

4960/4960 [
Epoch 9/10

4960/4960 [

Epoch 10/10

4960/4960 [

2126/2126 [

Test score: 0.027, accuracy: 0.991

]-7s-loss

]-7s-loss:
]-7s-loss:
] - 8s - loss:
] - 8s - loss:
] - 8s - loss:
]-7s-loss:
] - 8s - loss:
]-7s-loss:

] - 9s - loss:

]-1s

0.1748 - acc

0.0859 - acc

0.0586 - acc

0.0565 - acc

0.0792 - acc

0.0618 - acc

0.0569 - acc

0.0419 - acc

0.0371 - acc

0.0422 - acc

: 0.9240 - val_loss
:0.9649 - val_loss
: 0.9754 - val_loss
: 0.9798 - val_loss
:0.9683 - val_loss
: 0.9746 - val_loss
:0.9752 - val_loss
: 0.9829 - val_loss
:0.9849 - val_loss

:0.9815 - val_loss

: 0.0390 - val_acc:
: 0.0431 - val_acc:
: 0.0528 - val_acc:
: 0.0386 - val_acc:
: 0.0233 - val_acc:
: 0.0247 - val_acc:
: 0.0266 - val_acc:
:0.0211 - val_acc:
: 0.0206 - val_acc:

:0.0266 - val_acc:

0.9840

0.9845

0.9779

0.9873

0.9892

0.9911

0.9906

0.9920

0.9920

0.9906

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras




Look up embeddings

INPUT FILE = "../data/umich-sentiment-train.txt"”
GLOVE_MODEL = "../data/glove.6B.100d.txt"

VOCAB S5I/E = 5000

EMBED SI/E = 1@8

BATCH S5IZE = 64

1@

MUM_EPOCHS

model.add(Embedding(vocab sz, EMBED SIZE, input length=maxlen,

weights=[embedding weights],

trainable=False)) < Set this!
model.add(SpatialDropoutlD(Dropout(@8.2)))




Using third-party Implementations (Gensim)

 Gensim library provides an implementation of word2vec.
e Keras does not provide any support for word2vec.

* Integrating the genism implementation into Keras is common
practice.



Using third-party Implementations (Gensim)

from gensim.models import Keyedvectors
import logging
import os

class TextasSentences(object):
def init (self, fname, maxlen):
self.fname = fname
self.maxlen = maxlen

def iter (self):
with open{os.path.join(DATA DIR, "textg8"), "rb") as ftext:
text = ftext.read().split(" ")
sentences, words = [], []
for word in text:

if len{words) »>= self.maxlen:
yield words
words = []
words. append (word)
yield words

logging.basicConfig(format="%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)

DATA DIR = "../data/"
sentences = Text8Sentences(os.path.join(DATA DIR, "textsg8"), 58)
model = word2vec.Word2Vec(sentences, size=308, min_count=38)



Using third-party Implementations (Gensim)

>>> model.vocab.keys()[©:18] >>> model.most_similar(“woman")

[ "homomorphism’, [("child’, ©.7©57571411132812),
'woods ', ('girl', ©.7©2182412147522),
"spiders’, ('man’, ©.6846336126327515),
"hanging”, ("herself', ©.6292711496353149),
‘'woody ', ('lady’, ©.6229539513587952),
"localized’, ("person’, ©.6190367937088013),
‘sprague’, ("lover’, ©.6862309741973877),
"originality”’, ('baby', ©.5993420481681824),
‘alphabetic’, ( 'mother’, ©.595447540©2832031),

"hermann’ ] ( 'daughter’, ©.5871444940567017)]



Using third-party Implementations (Gensim)

>>> model.most_similar(positive=[ 'woman’, "king’'], negative=['man’], topn=180)
[('queen', ©.6237582564353943),
('prince', ©.5638638734817505),
("elizabeth’, ©.5557916164398193),
("princess’, ©.5456487070159912),
('throne’, ©.5439794063568115),
('daughter’, ©.5364126563072205),
("empress', ©.5354889631271362),
('isabella’, ©.5233952403068542),
('regent', ©.520746111869812),
('matilda’, ©.5167444944381714)]

>>> model.similarity("girl”, “"woman"
0.702182479574

>>> model.similarity("girl”, "man”
©.574259909834

>>> model.similarity("girl”, "car”
©.289332921793

>>> model.similarity("bus”, "car”
©.483853497748



Neural-based Predictive Models

e Goal: Predict Text using Learned Embedding Vectors
 Word2vec:

e Shallow neural network

e Local: nearby words predict each other

e Fixed word embedding vector size (i.e., 300)
e Optimizer: Mini-batch SGD

e SyntaxNet:
e Deep(er) neural network
 More global
* Not an RNN!
e Can Combine with BOW-based models (i.e., word2vec CBOW)



Word2vec Library

* Gensim:
e Python only
e Most popular

e Spark ML

e Python + Jawa/Scala
e Supports only synonyms



*vec

e |da2vec:
e LDA (Global) + word2vec (local)

* Like2vec:
* Embedding-based Recommender



Word Embeddings Applications
Machine Translation

Word Embeddings for MT: Kiros (2014)

Word Embeddings for MT: Mikolov (2013)
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Exploiting Similarities among Languages for Machine Translation




Word Embeddings Applications
(Sentiment Analysis)
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Thank you!
Q/A Sessions

All source codes and datasets are available!
The DLwK sources are fixed and modified to run
on Python 3.5 and Keras 2.2 in Windows 10 with GPU

Please ask Panitia INACL 2017
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