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Natural Language Processing

• Mostly works with text data.

• Could be applied to music, bioinformatics, speech, etc.

• Machine learning perspective: NL is a sequence of       
variable-length sequences of high-dimensional vectors. 

How to best represent the word for learning?



Word Embeddings

• A set of language modeling and feature learning 
techniques in natural language processing.

• Mapped words or phrases from the vocabulary to vectors 
of real numbers. 

• Mathematical embedding from a space with one 
dimension per word to a continuous vector space with 
much lower dimension.



One-Hot Encoding
V = {zebra, horse, school, summer}

v(zebra) = [1, 0, 0, 0]
v(horse) = [0, 1, 0, 0]

v(school) = [0, 0, 1, 0]
v(summer) = [0, 0, 0, 1]

(+) Pros:
Simplicity

(-) Cons:
Can be memory inefficient
Notion of "word similarity" is undefined



Distributional Representation

Is there a representation that preserves the similarities of word
meanings?

d(v(zebra), v(horse))  < d(v(zebra), v(summer))

“You shall know a word by the company 
it keeps” - John Rupert Firth

v(Paris)-v(France) ≈ v(Berlin)-v(Germany)



www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation

https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf


www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation

https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf


Distributional Representation

(+) Pros:
Simplicity (BOW assumption)
Has notion of word similarity

(-) Cons:
Can be memory inefficient

Latent Semantic Analysis, Latent Dirichlet Allocation, Self-organizing map, 
Hyperspace Analog to Language, Independent Component Analysis, 
Random Indexing.



Distributed Representation

𝑽𝑽 is a vocabulary
𝒘𝒘𝑖𝑖 ∈ 𝑽𝑽

𝒗𝒗(𝒘𝒘𝑖𝑖) ∈ 𝑹𝑹𝑛𝑛

𝒗𝒗(𝒘𝒘𝑖𝑖) is a low-dimensional, learnable, 
dense word vector



colah.github.io/posts/2014-07-NLP-RNNs-Representations

Distributed Representation

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations


Distributed Representation

(+) Pros:
Has notion of word similarity
Memory Efficient (low dimensional)

(-) Cons:
Computationally intensive



Distributed Representation as a Lookup Table

𝑾𝑾 is a matrix whose rows are 𝒗𝒗(𝒘𝒘𝑖𝑖) ∈ 𝑹𝑹𝑛𝑛

𝒗𝒗(𝒘𝒘𝑖𝑖) returns 𝒊𝒊𝑡𝑡𝑡 row of 𝑾𝑾



Statistical Language Model

A sentence 𝒔𝒔 = 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇

How likely is 𝒔𝒔?
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇

According to the chain rule (probability) 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 = �
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇



N-gram Models
n-th order Markov assumption 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 ≈�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−𝑛𝑛,⋯ , 𝑥𝑥𝑡𝑡−1

Bigram model of 𝒔𝒔 = (𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑖𝑖, 𝑜𝑜𝑜𝑜, 𝑐𝑐𝑡𝑐𝑐, 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐, . )
1. How likely does ‘a’ follow ‘<S>’?
2. How likely does ‘cute’ follow ‘a’?
3. How likely does ‘is’ follow ‘bird’?
4. …   



n-gram Models
n-th order Markov assumption 

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 ≈�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−𝑛𝑛,⋯ , 𝑥𝑥𝑡𝑡−1

Bigram model of 𝒔𝒔 = (𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑖𝑖, 𝑜𝑜𝑜𝑜, 𝑐𝑐𝑡𝑐𝑐, 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐, . )

𝑝𝑝 𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1 =
𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐 𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1,𝑤𝑤𝑖𝑖
𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐 𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1

the counts are obtained from a training corpus



n-gram Models

(+) Pros:
Computationally efficient

(-) Cons:
Data sparsity
Lack of generalization:

[ride a horse], [ride a llama], [ride a zebra]



Word Embedding versus Other 
Representations
• They use words as their context
• More natural form of semantic similarity
• Human understanding perspective
• The technique of choice for vectorizing text for NLP Tasks:

• Text classification
• Document clustering
• Part of speech tagging
• Named entity recognition
• Sentiment analysis
• …



word2vec vs one-hot

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

one-hot word2vec

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations


Reasoning with word vectors

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


word2vec

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


CBOW vs Skip-gram

• CBOW:
• Predicts the current word given a window of surrounding words (context)
• The order of the context words does not influence the prediction (bag of 

words assumption)

• Skip-gram:
• Predict the surrounding words (context) given the center word.

CBOW is faster but skip-gram does a better job at 
predicting infrequent words.



Skip-gram implementation in Keras

Training 
Data 
(Pairs)

Expected 
Prediction

Takes in a word vector and a context 
vector, learns to predict one or zero 
depending whether it sees a positive or 
negative sample.

Deliverables

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

The first 10 of 56 (pair, label) 



CBOW implementation in Keras

Training 
Data 
(Pairs)

Expected 
Prediction

Takes the context words as input
Predicts the target word

Deliverables

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Glove vs Word2vec

• Glove :
• Count-based
• Capture global co-

occurrences statistics
• Requires upfront pass 

through entire dataset.

• Both are fundamentally 
similar:

• Capture local co-
occurrence statistics 
(neighbors)

• Capture distance 
between embedding 
vector (analogies)



Glove vs Word2vec

• GloVe generally shows higher accuracy than word2vec.
• GloVe is faster to train if use parallelization
• Python tooling for GloVe is not as mature as for word2vec. 

• The only tool available to do this as of the time of writing is the 
GloVe-Python project (https://github.com/maciejkula/glove-
python), which provides a toy implementation for GloVe on 
Python



Fine-tune learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Learned 
Model

New 
Training
Data



Fine-tuned learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Fine-tuned learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Fine-tune learned embedding (GloVe)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Learned 
Model



Fine-tune learned embedding (GloVe)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras



Look up embeddings

Set this!



Using third-party Implementations (Gensim)

• Gensim library provides an implementation of word2vec.
• Keras does not provide any support for word2vec.
• Integrating the genism implementation into Keras is common 

practice.



Using third-party Implementations (Gensim)



Using third-party Implementations (Gensim)



Using third-party Implementations (Gensim)



Neural-based Predictive Models

• Goal: Predict Text using Learned Embedding Vectors
• Word2vec:

• Shallow neural network
• Local: nearby words predict each other
• Fixed word embedding vector size (i.e., 300)
• Optimizer: Mini-batch SGD

• SyntaxNet:
• Deep(er) neural network
• More global
• Not an RNN!
• Can Combine with BOW-based models (i.e., word2vec CBOW)



Word2vec Library

• Gensim:
• Python only
• Most popular

• Spark ML
• Python + Jawa/Scala
• Supports only synonyms



*2vec

• lda2vec:
• LDA (Global) + word2vec (local)

• Like2vec:
• Embedding-based Recommender



Word Embeddings Applications                  
(Machine Translation)



Word Embeddings Applications        
(Sentiment Analysis)



Thank you! 
Q/A Sessions

All source codes and datasets are available! 
The DLwK sources are fixed and modified to run 
on Python 3.5 and Keras 2.2 in Windows 10 with GPU

Please ask Panitia INACL 2017
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