
Deep Learning for Text Processing with Focus on
Word Embedding:

Concept and Applications
Mohamad Ivan Fanany, Dr. Eng.,

Five Reasons to Explore
Deep Learning

Contents

• Natural language processing
• One-hot Encoding

• Distributional Representation
• Distributed Representation
• Word embeddings

• Exploring word2vec and GloVe
• Using Pre-trained embeddings

Natural Language Processing

• Mostly works with text data.

• Could be applied to music, bioinformatics, speech, etc.

• Machine learning perspective: NL is a sequence of
variable-length sequences of high-dimensional vectors.

How to best represent the word for learning?

Word Embeddings

• A set of language modeling and feature learning
techniques in natural language processing.

• Mapped words or phrases from the vocabulary to vectors
of real numbers.

• Mathematical embedding from a space with one
dimension per word to a continuous vector space with
much lower dimension.

One-Hot Encoding
V = {zebra, horse, school, summer}

v(zebra) = [1, 0, 0, 0]
v(horse) = [0, 1, 0, 0]

v(school) = [0, 0, 1, 0]
v(summer) = [0, 0, 0, 1]

(+) Pros:
Simplicity

(-) Cons:
Can be memory inefficient
Notion of "word similarity" is undefined

Distributional Representation

Is there a representation that preserves the similarities of word
meanings?

d(v(zebra), v(horse)) < d(v(zebra), v(summer))

“You shall know a word by the company
it keeps” - John Rupert Firth

v(Paris)-v(France) ≈ v(Berlin)-v(Germany)

www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation

https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation

https://www.cs.ox.ac.uk/files/6605/aclVectorTutorial.pdf

Distributional Representation

(+) Pros:
Simplicity (BOW assumption)
Has notion of word similarity

(-) Cons:
Can be memory inefficient

Latent Semantic Analysis, Latent Dirichlet Allocation, Self-organizing map,
Hyperspace Analog to Language, Independent Component Analysis,
Random Indexing.

Distributed Representation

𝑽𝑽 is a vocabulary
𝒘𝒘𝑖𝑖 ∈ 𝑽𝑽

𝒗𝒗(𝒘𝒘𝑖𝑖) ∈ 𝑹𝑹𝑛𝑛

𝒗𝒗(𝒘𝒘𝑖𝑖) is a low-dimensional, learnable,
dense word vector

colah.github.io/posts/2014-07-NLP-RNNs-Representations

Distributed Representation

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations

Distributed Representation

(+) Pros:
Has notion of word similarity
Memory Efficient (low dimensional)

(-) Cons:
Computationally intensive

Distributed Representation as a Lookup Table

𝑾𝑾 is a matrix whose rows are 𝒗𝒗(𝒘𝒘𝑖𝑖) ∈ 𝑹𝑹𝑛𝑛

𝒗𝒗(𝒘𝒘𝑖𝑖) returns 𝒊𝒊𝑡𝑡𝑡 row of 𝑾𝑾

Statistical Language Model

A sentence 𝒔𝒔 = 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇

How likely is 𝒔𝒔?
𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇

According to the chain rule (probability)

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 = �
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇

N-gram Models
n-th order Markov assumption

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 ≈�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−𝑛𝑛,⋯ , 𝑥𝑥𝑡𝑡−1

Bigram model of 𝒔𝒔 = (𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑖𝑖, 𝑜𝑜𝑜𝑜, 𝑐𝑐𝑡𝑐𝑐, 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐, .)
1. How likely does ‘a’ follow ‘<S>’?
2. How likely does ‘cute’ follow ‘a’?
3. How likely does ‘is’ follow ‘bird’?
4. …

n-gram Models
n-th order Markov assumption

𝑝𝑝 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑇𝑇 ≈�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝 𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−𝑛𝑛,⋯ , 𝑥𝑥𝑡𝑡−1

Bigram model of 𝒔𝒔 = (𝑎𝑎, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑏𝑏𝑖𝑖, 𝑜𝑜𝑜𝑜, 𝑐𝑐𝑡𝑐𝑐, 𝑐𝑐𝑏𝑏𝑐𝑐𝑐𝑐, .)

𝑝𝑝 𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1 =
𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐 𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1,𝑤𝑤𝑖𝑖
𝑐𝑐𝑜𝑜𝑐𝑐𝑜𝑜𝑐𝑐 𝑤𝑤𝑖𝑖−(𝑛𝑛−1) ,⋯ ,𝑤𝑤𝑖𝑖−1

the counts are obtained from a training corpus

n-gram Models

(+) Pros:
Computationally efficient

(-) Cons:
Data sparsity
Lack of generalization:

[ride a horse], [ride a llama], [ride a zebra]

Word Embedding versus Other
Representations
• They use words as their context
• More natural form of semantic similarity
• Human understanding perspective
• The technique of choice for vectorizing text for NLP Tasks:

• Text classification
• Document clustering
• Part of speech tagging
• Named entity recognition
• Sentiment analysis
• …

word2vec vs one-hot

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

one-hot word2vec

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations

Reasoning with word vectors

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

CBOW vs Skip-gram

• CBOW:
• Predicts the current word given a window of surrounding words (context)
• The order of the context words does not influence the prediction (bag of

words assumption)

• Skip-gram:
• Predict the surrounding words (context) given the center word.

CBOW is faster but skip-gram does a better job at
predicting infrequent words.

Skip-gram implementation in Keras

Training
Data
(Pairs)

Expected
Prediction

Takes in a word vector and a context
vector, learns to predict one or zero
depending whether it sees a positive or
negative sample.

Deliverables

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Skip-gram implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

The first 10 of 56 (pair, label)

CBOW implementation in Keras

Training
Data
(Pairs)

Expected
Prediction

Takes the context words as input
Predicts the target word

Deliverables

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW implementation in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

CBOW from the scratch in Keras

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Glove vs Word2vec

• Glove :
• Count-based
• Capture global co-

occurrences statistics
• Requires upfront pass

through entire dataset.

• Both are fundamentally
similar:

• Capture local co-
occurrence statistics
(neighbors)

• Capture distance
between embedding
vector (analogies)

Glove vs Word2vec

• GloVe generally shows higher accuracy than word2vec.
• GloVe is faster to train if use parallelization
• Python tooling for GloVe is not as mature as for word2vec.

• The only tool available to do this as of the time of writing is the
GloVe-Python project (https://github.com/maciejkula/glove-
python), which provides a toy implementation for GloVe on
Python

Fine-tune learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Learned
Model

New
Training
Data

Fine-tuned learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Fine-tuned learned embedding (word2vec)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Fine-tune learned embedding (GloVe)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Learned
Model

Fine-tune learned embedding (GloVe)

https://www.packtpub.com/big-data-and-business-intelligence/deep-learning-keras

Look up embeddings

Set this!

Using third-party Implementations (Gensim)

• Gensim library provides an implementation of word2vec.
• Keras does not provide any support for word2vec.
• Integrating the genism implementation into Keras is common

practice.

Using third-party Implementations (Gensim)

Using third-party Implementations (Gensim)

Using third-party Implementations (Gensim)

Neural-based Predictive Models

• Goal: Predict Text using Learned Embedding Vectors
• Word2vec:

• Shallow neural network
• Local: nearby words predict each other
• Fixed word embedding vector size (i.e., 300)
• Optimizer: Mini-batch SGD

• SyntaxNet:
• Deep(er) neural network
• More global
• Not an RNN!
• Can Combine with BOW-based models (i.e., word2vec CBOW)

Word2vec Library

• Gensim:
• Python only
• Most popular

• Spark ML
• Python + Jawa/Scala
• Supports only synonyms

*2vec

• lda2vec:
• LDA (Global) + word2vec (local)

• Like2vec:
• Embedding-based Recommender

Word Embeddings Applications
(Machine Translation)

Word Embeddings Applications
(Sentiment Analysis)

Thank you!
Q/A Sessions

All source codes and datasets are available!
The DLwK sources are fixed and modified to run
on Python 3.5 and Keras 2.2 in Windows 10 with GPU

Please ask Panitia INACL 2017

	Deep Learning for Text Processing with Focus on Word Embedding:�Concept and Applications
	Slide Number 2
	Slide Number 3
	Five Reasons to Explore Deep Learning
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Contents
	Natural Language Processing
	Word Embeddings
	One-Hot Encoding
	Distributional Representation
	Slide Number 19
	Slide Number 20
	Distributional Representation
	Distributed Representation
	Slide Number 23
	Distributed Representation
	Distributed Representation as a Lookup Table
	Statistical Language Model
	N-gram Models
	n-gram Models
	n-gram Models
	Word Embedding versus Other Representations
	word2vec vs one-hot
	Reasoning with word vectors
	word2vec
	CBOW vs Skip-gram
	Skip-gram implementation in Keras
	Skip-gram implementation in Keras
	Skip-gram implementation in Keras
	Skip-gram implementation in Keras
	CBOW implementation in Keras
	CBOW implementation in Keras
	CBOW from the scratch in Keras
	CBOW from the scratch in Keras
	CBOW from the scratch in Keras
	CBOW from the scratch in Keras
	CBOW from the scratch in Keras
	CBOW from the scratch in Keras
	Glove vs Word2vec
	Glove vs Word2vec
	Fine-tune learned embedding (word2vec)
	Fine-tuned learned embedding (word2vec)
	Fine-tuned learned embedding (word2vec)
	Fine-tune learned embedding (GloVe)
	Fine-tune learned embedding (GloVe)
	Look up embeddings
	Using third-party Implementations (Gensim)
	Using third-party Implementations (Gensim)
	Using third-party Implementations (Gensim)
	Using third-party Implementations (Gensim)
	Neural-based Predictive Models
	Word2vec Library
	*2vec
	Word Embeddings Applications (Machine Translation)
	Word Embeddings Applications (Sentiment Analysis)
	Slide Number 64

