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OPTIMAL CONTROL AND EQUILIBRIUM OF DELAYED S EI R MODEL WITH
SATURATED INCIDENCE AND TIME DELAY IN CONTROL VARIABLES

RUBONO SETIAWAN*

Abstract. In this paper we wil investigate the optimal control strategy of S E I R epidemic model with saturated
incidence, which is use the mixed delay time in state and control variables. This strategy is related to vaccination program
to minimize the number of the susceptible, exposed and also invected individuals and maximize the number of recovered
individuals during the course of an epidemic. The result of our investigation is about existence and characterization of
optimal solutions and their respective control of our model. We prove the existence of optimal solutions and optimal control.
Then, to characterize this optimal control coresponding to optimal solutions, we analyze the Augmented Hamiltonian of
our delayed control problem by Pontryagins Minimum Principle. The other goal, we will analyze the stability of the disease
free and disease equilibrium of our delayed system.
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1. Introduction. In this paper we use S E I R ( Susceptible Exposed Invected Recovered) as a
basic model. Epidemic model with nonconstant population with logistic growth rule (in S T R model )
has been analyzed by J.Z.Chang, et.al.,[3]. There are various type of incidence rate in epidemic system
such us bilinear, nonlinear and saturated incidence.

In this paper, we use modified saturated incidence with two saturation factor % that is
measure the inhibitory effect of susceptible and also infected individuals. The saturated incidence is pro-
posed by May and Anderson [7] in 1978. This incidence term is more realistic than the other incidence
term in the sense of epidemic control. The modified saturated incidence is also use by Laarabi, et.al.[2].
The effect of each saturation factor, which is refer to «; and «g, stems from natural epidemical control
strategies. This strategies are based on taking appropriate preventive measures to the high level of the
disease spread from susceptible and infected individuals respectively. In this paper we choose this mod-
ified saturated incidence to accomadate the protection measures of susceptible and infected individuals
at a high infective.

One of method to control the spread of disease is vaccination strategy. The application of optimal
control to the epidemic model has been analyzed by several author, such that [1, 2, 5, 6, 8]. Futher more,
optimal control problem in epidemic model with time delay, in SIR model with bilinear incidence, has
been analyzed by M.Elhia, et.al. [6]. In this paper, we try to find the existence of the optimal control of
SEIR epidemic system with saturated incidence and nonconstant population with logistic growth rule.
Time delay parameter also added to the state and control variable. Then, we also characterize this
control to find this optimal value related to the optimal solutions.

This paper is organized as follows. In section 2, we will present our model formulation with its
properties and assumption, futhermore, still in this section, we describe the optimal control problem
which is related to optimal strategy of vaccination. Then, in section 3, we will analyze the existence of
solutions and equilibria of our system. The existence of the optimal is presented in section 3. Finally,
in section 4, we will use Pontryagins Minimum Principle to characterize the Augmented Hamiltonan of
our control problem to obtain the optimal control.

2. Model Formulation. In this paper, we consider the SEIR with nonconstant population and
generalized saturated incidence with discrete time delay 74. The time delay 74 in this SEIR model is
related to latent period of susceptible individuals become exposed. We take 7,4 into bilinear term SSI,
which is the part of the complete form of generalized saturated incidence term. We assume that the
susceptible host population is assumed to have the logistic growth model with carrying capacity K and
specific growth rate r, so the total host population is not constant. Hence, we have the generalized
delayed SEIR model as follows :

- S(t) BSH)I(t —Ta)
S@t)=r ( - 7) SO -1 a1 S(t) + azI(t)

i BSMI(t—Ta)
(2.1) B(t) = 14 a1 S(t) + ajf(t)

—€B(t) — mE(t)
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(2.2) N(t) = S(t) + E(t) + I(t) + R(t)

where r, K, 8, a1, as, €, 11, p2, i3 and v are positive constants. «y and ag are paramaters that is
measures the inhibitory effect of the susceptible and the infected individuals, respectively, € is the rate
at which exposed individuals become infectious p1,u0 and pg represent the natural percapita death rate
of exposed, infected and recovered individuals, v is natural recovery rate. The intial values of system
(2.1) ¢ = (¢1, 92, ¥3, pa) are defined in Banach Space :

ey = {® € C(|-7,0], BL),: ©.(0) = S(6), Bs(6) = E(6), Bs(6) = I(6), ®4(6) = R(6),6 € [~7.0]}
with R% = {(S.E,I,R) € R*,S > 0,E > 0,] > 0,R > 0}. By biological meaning, we assume that
Pi > O,Z = 1727374'

Our main goal is to minimize the number of susceptible, exposed and also infected individuals and
to maximize the number of recovered individuals by minimizing the respective objective functional into
the model (2.1), we also include a control variable u, that is represents the percentage of susceptible
individuals being vaccinated per unit time [6]. We also take the second discrete time delay 7p into our
system. It is measure the time taken by vaccinated susceptible individuals to move from the class of
susceptible into recovered class. Thus, according to explanation by M.Elhia, et.al in [6]: at time 75
only a percentage of susceptible individuals that have been vaccinated 75 time unit ago, that is, at time
t — 7B, are removed from the susceptible class and added to the recovered class. Hence, we get system
(2.1) with time delay in state and control variables as follows :

; S(t) BS)I(t —71a)
St =r (1 N 7) S0~ T a1 S() + aal

o BSMI(t—Ta)
(23) E(t) = 14+ ai1S(t) + aQAI(t)
I(t) = eB(t) =71 (t) = paI (1)
R(t) =~I(t) — psR(t) + u(t — 78)s(t — 7B)

ol u(t —7)s(t —B)

—€eE(t) — mE(t)

with w(f) = 0 is initial condition of u related to initial condition of system (2.1). The control u is
assumed to be integrable in the sense of Lebesque integrable and also bounded with 0 < u < U, < 1,
where U4, is a given constant.

3. The Existence of the Equilibrium. In this chapter we wiil find the equilibrium of system
(2.3). When 74 =0 and 75 = 0 system (2.3) is equivalent to

- () BS()I(t) _
S(t)—T( —7) 5(6) - 1+ a15(t) + axI(t) -
BS()I(t)

(3.1) B() = 150,80 + oal ()

I(t) = eE(t) = ~I(t) — paI(t) =0

R(t) = vI(t) — pusR(t) = 0

—€eE({t)—mE({t)=0

From the above equations we get

BSI (€ + pa)(y + p2)
2 = I
(3 ) 14+ o015+ asl €
Let define
(33) P1 = (F + /1,1)

(3.4) Py = (v + p2)
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and then, from equation (3.2) we get

o « PP (14 aol”)
(30) S h 56 — P1P2(X1

If we subtitute the value of S* in the equation (3.5) to the first equation of equation (3.1) we get

o (Psag + 2Py — £355) 4 \/(PWz +2P, — Baf2)2 4 4(P; — Py)Pyad

(3.6)

2P40é%
where
(37) P3 =6€—P1P2(}’,1
(38) P4 = EP1P2
If we define the threshold value
(3.10) R = !
' YT AP — PPy
1
(3.11) Ry =

(P5O(2 + 2P, — %)

If Ry, Ro > 0 we get the positive value of I* in equation (3.6).Hence we get the endemic equilibrium
E, = (S*, E*, I*, R*), with E* = #I* and R* = u—l On the otherhand, if both R; and Ry are equal
to 1, we have two disease free equilibriums Ep = (0,0,0,0) and Ex = (K,0,0,0).

4. The Optimal Control Problem and The Existence of Optimal Control. Our goal is to
minimize the objective functional for fixed terminal time t.nq

(1) J(u) = /0 S () + AsE() + AsT(t) — AsR(E) + %u(tﬁ)dt

where A; > 0, for i = 1,2, 3,4,5, is is weight that balance the size of terms. We use quadratic control
term like the many author [2, 5, 6]. The control u is elements of admissible control U, which is defined
by

(42) U= {0 < U < Upaks < 1,1 € [07 tend]}

where u is Lebesgue measurable. Obviously, we have the optimal control problem

(4.3) min{J(u) :u € U}

where u € U. In order to find the existence of control optimal of system (2.3), we use same techniques
which is used by Fleming and Rishel in [9] and also M. Elhia, et. al in [6].

THEOREM 4.1. Based on the control problem (2.83). There is an optimal control u* € U such that
J(u*) = mingey J(u).

Proof. By biological assumption its clear that the set of controls U, which is defined in (4.2) and the
correspondig state variables is not empty. Then, the second step we will prove the control set U (4.2)
is closed and convex. Based on definition of v € U, which is for eachu € U is bouded on the interval
[0, Umaks] and also convex on the interval. Based on the system (2.3), we can conclude that the right
hand side of the state system is bounded by a linear function in the state and control variables using
the boundedness of the solution. Its clear that the integrand in the form of objective functional (4.1)
is convex on U. From the Lagrangian L of the objective functional (4.1) we have the positive constant
¢, k1, ko such that satisfying O

(1.4) L(S, B, I, R,u) > ky + ko |u?|?
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5. The Characterization of The Optimal Control. From delayed control problem (2.3) we get
the augmented Hamiltonian for delayed control problem

4
(51) H= AlS(t) + AQE(t) + A3I(t) - A4R(t> + %u(tﬁ + Z Aifi
=0

where f; is the right hand side of the differential equation of the ith equation of the state variables. We
will use Pontryagins maximum principle with delay in state and control variables [4] to get an optimal
control u* coresponding to optimal solutions (S*, E*, I*, R*). First, we will find the adjoints equations
and transversality conditions of delayed control problem (2.3) that is satisfy the following conditions :

OH(t) OH(t+ 7p)

(5'2) 1= - BS(t) - X[O:tend—TB](t) 8S(t — TB) y AL (tend) =0
. o0H

(53) )\2 = _a—Ev)\Q(tend) =0

OH(t) OH(t + 74)

=4 —_ 7 _— « =

(0-4) Az = 8I(t) X[O,tend—rA](t) 6I(t — TA) a)\S(tend) 0
. oH

(55) )\4 = _ﬁ7 )\4(tend) =0

so we have the transversality conditions :
(56) Al(tend) = >\2(tend) = >\3(t6nd) = )\4(tend) =0

and from (5.2),(5.3),(5.4), and (5.5), we get

. 25* ()\1 —Ag)ﬁl*(l-l—agl) ) *
A=At M= =) + (TS T aal")? + X[0,tena—rs] ) (A1t + TB) — Aa(t + 7B))u

Ao = —As+ (A2 — Az)e+ Agpn

: (p2 — p1)oz
A3 = —As+ A —
3 3+ As(y + p2) — pay + T+ 15" + asl")?

(A (t+74) = Aot +74))BS*
(1 4+ a158* + agl*)?

+ X[Owtend_TA] (t)
Xy = Ay + dapiz

Futhermore, the optimal control u* can be solved from the optimality condition :

OH (t) OH(t+ 75) _
(5-7) 8u(t) + X[Ovtend_TB](t) Bu(t — TB) :Al(tend) =0
That is
(58) Asu* + X[U,tend—TB](t)(/\4(t + TB) — /\1(t + TB))S* =0

By the bounds of «* in admissible control set U, we get the optimal control u* :

X[0,tna—t] (E) At +78)T — Ay (t +75))S*
" )
5

(5.9) w*(t) = min(umaks, max(



Optimal Control and Equilibrium of Delayed S E I R Model with Saturated Incidence and Time Delay in Control Variables

31

6. Conclusion. In this paper we get some result about properties and dynamics of control of our

model. We prove the existence of our control optimal with Theorem (4.1). Finally, by using Pontryagins
maximum principle to the Augmented Lagrangian of objective functional (4.1), which is contain delay
time parameter, we obtain the explicit expression of optimal control of our optimal control problem.
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