Konsep Decision Tree & Random Forest
Konsep dari decision tree adalah mengubah data menjadi aturan-aturan keputusan. Manfaat utama dari penggunaan decision tree adalah kemampuannya untuk mem-break down proses pengambilan keputusan yang kompleks menjadi lebih simple, sehingga pengambil keputusan akan lebih menginterpretasikan solusi dari permasalahan.
Decision tree juga berguna untuk mengeksplorasi data, menemukan hubungan tersembunyi antara sejumlah calon variabel input dengan sebuah variabel target. Decision tree memadukan antara eksplorasi data dan pemodelan, sehingga sangat bagus sebagai langkah awal dalam proses pemodelan.
Nama lain dari decision tree adalah CART (Classification and Regression Tree). Dimana metode ini merupakan gabungan dari dua jenis pohon, yaitu classification tree dan juga regression tree.
Jika variabel dependen yang dimiliki bertipe kategorik maka CART menghasilkan pohon klasifikasi (classification trees). Sedangkan jika variabel dependen yang dimiliki bertipe kontinu atau numerik maka CART menghasilkan pohon regresi (regression trees).
Contoh pohon klasifikasi :
Contoh pohon Regresi :
Decision tree ini bisa terjadi overlap, terutama ketika kelas dan kriteria yang digunakan sangat banyak tentu saja dapat meningkatkan waktu pengambilan keputusan sesuai dengan jumlah memori yang dibutuhkan.
Dalam hal akumulasi, decision tree juga seringkali mengalami kendala eror terutama dalam jumlah besar. Selain itu, terdapat pula kesulitan dalam mendesain decision tree yang optimal. Apalagi mengingat kualitas keputusan yang didapatkan dari metode decision tree sangat tergantung pada bagaimana pohon tersebut didesain. Maka dibutuhkan Random Forest untuk mengatasi overlap di atas